
ECS 30, Programming and Problem Solving Fall Quarter 2015

Homework 4
Due: November 23, 2015 Points:100

Note about points. If you submit this by Friday, November 20, at 11:55pm, we will add 10 points to whatever score
you receive.

Linux
All these questions are to be answered using the CSIF systems. If you use some other system, your answers may differ,
and we will grade based on the CSIF systems.

You must put your answers in a file called “Linux.txt” or “Linux.pdf”. If you need to submit pictures also, put
them in files called “Linuxn.ext”, where n is a digit and ext is an appropriate extension. If you call your file(s)
anything else, or submit something other than text or a PDF file, we will not grade it and you will get 0!

1. (5 points) I have a file in my directory named -r (that is a “-” followed by the letter “r”). I want to rename it
dashr. What command should I type to do this? Give the full command, not just the name of the command.

2. (5 points) I want to make the file libprog.a in my home directory available to everyone so they can copy it, but
I do not want anyone to be able to see any other files in my home directory. How should I set the “other” bits of
my directory’s protection to do this?

3. (10 points) The file /usr/share/dict/words contains a list of English words and abbreviations, one per line. How
many words and abbreviations does it have? How many have the trigram “abc” in them? Remember, you must
show the command(s) you use to get this information.

C Programming Language
Please do either of the two questions. You must pick one; you cannot do part of one and part of the other. In your
submission, state which one you have done.

If you do question 5, you must submit a file called “MyProgLab.ext”, where ext is any 3-letter extension. We will
not look at the contents of this file; its presence tells us you did the MyProgrammingLab exercises.
If you do question 6, you must put your answers in a file called “CPL.txt” or “CPL.pdf”. If you call your file(s)
anything else, or submit something other than text or a PDF file, we will not grade it and you will get 0!

4. (20 points) In MyProgrammingLab, please do the following questions: 10224 (second question of 9.2) and
questions 10289–10293 (all questions of 10.1) . Please click on “Submit” for each answer, so you can see if
your answer is correct. If it isn’t, try again. We will consider only the last answer you submit. Also, do not
submit your answers to SmartSite; simply say you have completed them, and we will get your score directly
from MyProgrammingLab.

5. (20 points) In the textbook, please do questions 4 and 5 in the Review Questions section of chapter 10.

Programming

You must put your program in a file called “fibs.c”. Do not include the timing function library. If you call your
file anything else, or submit something other than a C program (for example, a text or PDF file containing the
code), we will not grade it and you will get 0!

Version of November 20, 2015 at 11:20pm Page 1 of 3



ECS 30, Programming and Problem Solving Fall Quarter 2015

6. (50 points) In homework #2, you wrote a program to print the Fibonacci numbers. Most of you did it iteratively;
a few, recursively. This program has you compare the two approaches.

Write a program that takes a single integer command-line argument, n. It prints the first n Fibonacci numbers in
two ways. First, it prints them by repeatedly calling a function that computes the Fibonacci numbers iteratively.
Second, it prints them by repeatedly calling a function that computes the Fibonacci numbers recursively. For
example, to print the first 20 numbers, and time their computation, you would type

fibs 20

The output looks like this:

Iterative: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
Recursive: 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181
Iterative timing: 0.000017
Recursive timing: 0.000084

Put one blank after the word “timing:” in the last two lines, and print the difference in times using the format
“%12.6f”.

You need to check for three error conditions.

(a) If the argument is not an integer, or does not begin with an integer (so “hello” is not a valid argument, but
“19hello” is, and should be treated as the integer 19) use the following line to print an error message (here,
argv[1] is the first argument after the command):

fprintf(stderr, "%s not an integer\n", argv[1]);

and exit with exit code 1.
(b) If the argument is a non-positive integer, print the following error message on the standard error:

Argument must be a positive integer

and exit with exit code 1.
(c) If you have more than one argument (not including the command name, of course), use the following line to

print an error message (here, argv[0] is the zeroth argument, which is the command name):

fprintf(stderr, "Usage: %s number\n", argv[0]);

and exit with exit code 1.

To do this program, you must write two Fibonacci functions, the first computing a Fibonacci number iteratively
and the second, recursively. Here is a prototype for the functions:

int iterfib(int n); /* compute the n-th Fibonacci number iteratively */
int recfib(int n); /* compute the n-th Fibonacci number recursively */

These both take an integer argument n and return the nth Fibonacci number. They do not print anything — your
main routine should do that!

The comparison of the two routines is to be done based on their time. Timing a routine requires that you obtain
the time before calling the routine, then call it, and then obtain the time after the routine returns. Now subtract
the first time from the second. To help, we have written two functions. The first function obtains the current
time. Its prototype is:

struct timeval *gettime(void);

and it returns a structure containing the number of seconds (field tv sec) and microseconds (field tv usec)
since time 0 (called “the epoch”, it is January 1, 1970, at 12:00:00am). To use this function, you must put this
line where you have the other includes:

#include <sys/time.h>

Version of November 20, 2015 at 11:20pm Page 2 of 3



ECS 30, Programming and Problem Solving Fall Quarter 2015

The pointer that gettime returns points to a static area in the library. So, each time you call gettime, that
changes. This means that if you need to refer to a previous value returned by gettime, be sure to copy it
somewhere!

The second function returns the difference between two times in seconds as a double. Its prototype is:

double timediff(struct timeval *t1, struct timeval *t2);

and it returns the difference between the second and the first arguments in seconds as a floating point number.

The timing functions are in the object file “timeit.o”, available at ˜bishop/ecs30/timeit.o on the CSIF. It is a
binary file, and so will only work on the CSIF.

There is also a sample program using the two timing functions. It is available at ˜bishop/ecs30/timeex.c on the
CSIF. This may help you use those functions. It shows you one way to save the value returned by gettime.

Finally, there is an executable program, reffibs, that will produce the proper output. It is available at ˜bish-
op/ecs30/reffibs on the CSIF. You can compare your output against it. Remember, though, that the times you get
may differ from the times this program gets. Gradebot takes this into account when grading your program.

Hint: Here is the recommended approach. Say you want to print the first n Fibonacci numbers. First, get the
time (call it TimeIterBegin) using gettime. Then in a for loop, call iterfib(i) with i = 1,2, . . . ,n, and
have the function return the i-th Fibonacci number. Print it while in the for loop, so you don’t have to store
it in an array. When done, get the final time (call it TimeIterEnd), again using gettime. Then subtract
TimeIterBegin from TimeIterEnd using timediff (call this result TimeIter). That’s the time to print the
first n Fibonacci numbers iteratively. Repeat, but using recfib(i) rather than iterfib(i). Then print
TimeIter and TimeRec, the equivalent of TimeIter but for the recursive version.

Also, note the output spacing. There are 2 spaces after the colon in the lines that begin with “Iterative:” and
“Recursive:”, and one space after the colon in the lines with “timings:”.

Debugging

You must put your corrected program in a file called “buggy.c”. If you call your file anything else, or submit
something other than a C program (for example, a text or PDF file containing the code), we will not grade it
and you will get 0!

7. (10 points) The program buggy.c, available at ˜bishop/ecs30/buggy.c on the CSIF, is to read in up to 1023 lines
of input, the maximum input line length being 1023 characters. It will then print the lines in reverse order. But
it doesn’t; it crashes. Please identify the problem, and say how to fix it. Give the specific line(s) where the
problem arises, and the code that you would fix it with.

Hint: The fixed program has to do the same thing as the buggy program is supposed to do, so you must print the
lines in reverse order without changing any characters, you must allocate space for the lines (that is, you cannot
eliminate the malloc), and you must free the space allocated for each line before exiting.

Version of November 20, 2015 at 11:20pm Page 3 of 3


