
ECS 36A, Programming and Problem Solving Winter Quarter 2019

UNIX File Hierarchy: Structure and Commands
The UNIX operating system organizes files into a tree structure with a root named by the character “/”. An example

of the directory tree is shown below.

/

bin etc dev tmp usr

csh . . . ls bin . . . tmp

All files have two types of names. An absolute path name is the name of the file that begins with a “/”; for example,
in the above picture, the program ls has as its absolute path name /bin/ls (because to find it, start at the root /, then go
to the directory bin in /, then to ls in bin). A relative path name identifies a file relative to an arbitrary directory in the
tree; for example, the relative path name of ls with respect to the directory bin is ls, because within the directory bin
you need only look for the file ls. An easy way to keep the two types straight is to remember that an absolute path
name always begins with a “/”, and a relative path name never does.

Every directory has at least two subdirectories. The directory . refers to the directory containing that entry; in other
words, in the above picture, /bin/. and /bin refer to the same directory. The . is most often used in contexts where the
“current directory” is important, and not the specific name of the current directory. The directory .. refers to the parent
directory; so /bin/.. is another way of saying /, and /usr/bin/.. is the same as /usr. This gives you a convenient way to
get back up the file tree.

File Types
There are several types of files in the file system; of these, you need to understand four different types.

An ordinary file (also called a regular file) may contain text, a program, or other data. It can be either an ASCII
file, with each of its bytes being in the numerical range 0 to 127 (representing characters), or a binary file, whose bytes
can be of all possible values 0 to 255.

A directory is a file that consist of directory entries for the files in that directory. There is one directory entry for
each file. Each directory entry contains the name of the file and a pointer to the file.

A device file is a file that represents a device. The UNIX operating system represents physical devices (printers,
terminals etc.) as filed so that the same I/O functions used to read and write regular files can be used to read from
and write to these devices. Devices which do input and output a character at a time, such as terminals and printers,
are represented as character special device files; devices which do input and output in chunks of characters (usually a
multiple of 256 characters) are represented as block special device files.

Understanding link files requires you to know a little about how the system implements the concept of “file.” The
UNIX operating system associates a structure called an inode with each file; all characteristics of the file are stored
there. Among things like access permissions, date and time of last access and modification, and owner, the inode
identifies the data that makes up the file. The “pointer” to the file that a directory contains is simply the inode number
of the file.

Two files are said to be linked if they refer to the same inode number. If the file X is linked to the file Y, then X
is an alternate name for the file Y. For example, cat X will produce exactly the same effect as cat Y. There are two
types of links. A hard link is simply an entry in a directory which contains an inode number that also is associated with
another file name; so, using X and Y as examples, the directory entries would have two different names (one would be
X and the other Y) but the inode numbers would be the same. A symbolic link (or soft link) is simply a file containing
the name of the file it is linked to. The difference is that with a hard link, deleting one of the directory entries does
not affect the other but with a symbolic link, deleting the file which is linked to makes the link useless. The command
ln(1) creates both types of links; give it the -s option to get a symbolic link, and no options to get a hard link.

The other types depend upon the system you are using. The most common other types are sockets (which are used
by processes to communicate with one another) and FIFOs (also called named pipes, these are very similar to sockets).

The command ls -l allows you to see the type of each file in a directory (among other things). The following is
the output of the command ls -alg (the -a option means to list those files and directories whose names begin with a
period, and the -g option means to show the group of the file):

Version of January 6, 2019 at 8:16pm Page 1 of ??

ECS 36A, Programming and Problem Solving Winter Quarter 2019

drwxr-xr-x 6 ecs4005 student 1024 Apr 22 13:30 ./
drwxr-xr-x 74 root student 1536 Mar 24 12:51 ../
-rw------- 1 ecs4005 student 188 Apr 13 15:53 .login
-rw------- 1 ecs4005 student 6 Mar 24 11:29 .logout
-rw------- 1 ecs4005 student 253 Apr 10 12:50 .xinitrc
-rw-r--r-- 1 ecs4005 student 516 Apr 10 13:00 .twmrc
-rw-r--r-- 1 ecs4005 student 1600 Apr 22 10:59 test2.out

The output is separated into 7 columns. The meaning of each column in the output is shown below:
1st column type and protection mode of the file
2nd column number of links to that file (the original file is considered a link)
3rd column owner of the file
4th column group of the file
5th column size of file in bytes
6th column date and time of last modification
7th column name of the file

File Access Control
In the UNIX operating system, all files are protected using a simple access control mechanism so that the owner of
a file can deny other users access to his or her files. The first column of the long directory list shows the access
characteristics of a file. It is in a form of 10 flags.

drwxr-xr-x
The meanings of the characters in this column are shown below:

• The first character shows the type of the file:

b block special device
c character special device
d directory
l symbolic link
p FIFO (named pipe)
s socket
- regular file

• The next three characters indicate the permissions the owner of the file has:

r as character 2 means the owner can read the file
w as character 3 means the owner can write the file
x as character 4 means the owner can execute the file
s as character 4 means the program runs as if the owner executed it, regardless of who actually executed it

(called ”the setuid bit;” don’t worry about this)
- instead of any of the above means the owner can’t access the file as appropriate

• The next three characters indicate the ways in which the members of the group (commonly called “the group”)
to which the file belongs can access the file:

r as character 5 means the group can read the file
w as character 6 means the group can write the file
x as character 7 means the group can execute the file
s as character 7 means the program runs as if the group executed it, regardless of who actually executed it

(called ”the setgid bit;” don’t worry about this)
- instead of any of the above means the members of the group can’t access the file as appropriate

• The last three characters indicate the ways in which all users except members of the group and the owner can
access the file:

Version of January 6, 2019 at 8:16pm Page 2 of ??

ECS 36A, Programming and Problem Solving Winter Quarter 2019

r as character 8 means the group can read the file
w as character 9 means the group can write the file
x as character 10 means the group can execute the file
t as character 10 means the program is not swapped out when it finishes (called ”the sticky bit;” don’t

worry about this)
- instead of any of the above means the user can’t access the file as appropriate

In determining access, the system checks to see if you are the owner of the file ; if so, it uses characters 2-4. If not,
it checks to see if you are a member of the group of the file; if so, it uses characters 5-7. If not, it uses characters 8-10.

You can change the access characteristics of a file using the command chmod(1), which we will talk about in a
later section.

Directory Related Commands
There are several commands affecting directories; here is a brief description and example of each. All are fully
documented in section 1 of the UNIX Programmer’s Manual.

cd directory

This changes the directory you’re in. If you omit directory, you get put in your home directory.

pwd

Display the name of the current working directory. As an example, let’s say your current working directory is /us-
r/home/groucho. Then:

% pwd
/usr/home/groucho

mkdir directory

Create directory. You must have write permission in directory’s parent. I strongly recommend you use only letters,
numbers, and the dash “-” (anywhere other than the first character in the name), the plus sign “+” (again, anywhere
other than the first character in the name), and the underscore “ ” in your directory name. You can use other characters
(in fact, anything except ‘/’, but doing so may cause problems.

rmdir directory

Delete directory. Again, you need write permission in directory’s parent. Also, directory must contain no files except
. and .. or the rmdir will fail.

mv old-directory new-directory

Rename old-directory to new-directory. This can only be done if old-directory and new-directory are on the same file
system (basically, if you’re moving a directory around in your account area, don’t worry about this; but you usually
can’t move one of your directories to /tmp, for example). As an example, let’s say you create a directory called help,
decide to rename it nohelp, and finally delete it:

% ls
% mkdir help
% ls
help
% mv help nohelp
% ls
nohelp

cp -r old-directory new-directory

Make a copy of old-directory named new-directory. Unlike mv, this works across file systems.

rm -r directory

Delete directory and all of its contents. As with rmdir, you need to have write permission to the parent of directory,
directory itself, and all of its subdirectories. Be very careful with this command as you cannot recover files and
directories you’ve accidentally deleted!

Version of January 6, 2019 at 8:16pm Page 3 of ??

ECS 36A, Programming and Problem Solving Winter Quarter 2019

File Related Commands
There are many UNIX commands dealing with files. Here, we go through some of the more common ones. Be aware
each of these has lots of options this handout does not go into, so be sure to read the manual page if you want the full
scoop!

chmod mode filename or chmod who op permissions filename

This changes the access permissions of the file. It has two forms, illustrated above.
In the first form, you specify an absolute mode, which is an octal number constructed from the logical OR of any

set of the following modes:
0400 owner can read the file
0200 owner can write to the file
0100 for a file, owner can execute it; for a directory, owner can look for a file in it (search permission)
0040 members of the file’s group can read the file
0020 members of the file’s group can write to the file
0010 for a file, members of the file’s group can execute it; for a directory, members of the directory’s

group can look for a file in it (search permission)
0004 all other users can read the file
0002 all other users can write to the file
0001 for a file, all other users can execute it; for a directory, all other users can look for a file in it (search

permission)
For example,

chmod 751 .login
makes the file .login readable, writeable, and executable by the owner, readable and executable by any members of

.login’s group, and executable only by everyone else.
The chmod(1) command allows you to specify the mode symbolically. A symbolic mode has the form

who op permission
where who is a combination of:

u owner (user) permissions
g group permissions
o others’ permissions
a all users; same as ugo

op is one of:
+ to add the permission
- to remove the permission
= to assign the permission explicitly (all other bits for that category, owner, group, or others, will be

cleared)
and permission is any combination of:

r read
w write
x execute

Look at the previous permission modes of the .login file in the previous example. Executing
chmod u=rx,g-r,o+r .login

will change the owner’s access to read and execute only (the writing permission is deleted), will delete the write
permission for members of the group, and will add read permission for everyone else. Here’s what the two commands
would do; note we use

ls -al .login
to check file status:

% ls -al .login
-rwxr-x--x 1 ecs4005 188 Apr 13 15:53 .login
% chmod u=rx,g-r,o+r .login
% ls -al .login
-r-x--xr-x 1 ecs4005 188 Apr 13 15:53 .login

Version of January 6, 2019 at 8:16pm Page 4 of ??

ECS 36A, Programming and Problem Solving Winter Quarter 2019

touch file

This creates file (if it does not exist) or changes the time of last access and modification of file (if it does exist). It’s not
used very often, but sometimes it’s just what you need to get that makefile just right.

% ls
% touch xyzzy
% ls -l
-rw-r--r-- 1 ecs4005 0 Jan 11 15:53 xyzzy

and after 2 minutes . . .

% touch xyzzy
% ls -l
-rw-r--r-- 1 ecs4005 0 Jan 11 15:55 xyzzy

cp old-file new-file
mv old-file new-file
ln old-file new-file
ln -s old-file new-file

These commands all have the same form, and are often grouped together. The first makes a copy of old-file called
new-file, the second changes the name of old-file to new-file, the third creates a hard link named new-file to old-file,
and the fourth creates a symbolic link named new-file to old-file.

cp old-file1 old-file2 . . . directory
mv old-file1 old-file2 . . . directory
ln old-file1 old-file2 . . . directory
ln -s old-file1 old-file2 . . . directory

These are alternate forms of the above commands. The first makes a copy of the file(s) named old-file1 old-file2 ...
in the directory directory; the new files retain the old names (but are in directory). The second command moves the
files old-file1 old-file2 . . . into directory, the third creates hard links named directory/old-file1, directory/old-file2, . . .
to old-file1, old-file2, . . . ; and the fourth creates symbolic links named directory/old-file1, directory/old-file2, . . . to
old-file1, old-file2,

rm -i file1 file2 . . .

Delete all of file1 file2 The option -i will tell rm to ask before it deletes each file. You can omit it, but keeping
it is highly recommended to protect yourself against errors (such as typing “rm x *” rather than “rm x*”. Be very
careful with this command as you cannot recover files you’ve accidentally deleted!

df

This displays the amount of free disk space on all file systems:

% df
Filesystem kbytes used avail capacity Mounted on
/dev/xy0a 14584 10014 3111 76% /
/dev/xy0g 686209 304550 313038 49% /usr

Acknowledgement
This document was originally written by Kevin Rich, and has been modified for ECS 36A by Matt Bishop.

Version of January 6, 2019 at 8:16pm Page 5 of ??

