ECS 36A, Programming and Problem Solving Fall Quarter 2019

Pointer Stew

This is a puzzle that uses pointers and arrays in a complex manner. If you completely understand how this works,
you definitely know your C pointers and arrays.

The Program

Line numbers are included for reference; they don’t appear in the source code, of course.

1 #include <stdio .h>
2 char xc[] = {

3 ”ENTER” ,

4 "NEW” ,

5 "POINT” ,

6 ”FIRST”

7}

8 char xxcp|[]
9 char xxxcpp = cp;
10 int main(void)

1l
-
o
+
(98]
o
+
[\
o
+
—_
o
-

1 {

12 printf ("%s”, *xx++cpp );

13 printf (7%s.”, s——x++cpp+3 );

14 printf ("%s”, *cpp[—2]+3 ):

15 printf (”%s\n”, cpp[—1]1[—11+1 );
16 return (0);

17 }

Analysis
Line 12: *x++cpp

Here, cpp points to cp. As cp is an array of pointers to pointers to characters, the “++” changes cpp to point to cp +
1. Then the first dereference (“*”) isto ¢ + 2, and the second dereference (“*”)isto * (c + 2),or c[2], or the string
“POINT”.

So the printf on line 12 prints the string POINT with no trailing newline.

After this, cpp points to cp + 1. The other variables are unchanged.

Line 13: *——*++cpp+3

First, we apply the rules of precedence to parenthesize this expression. This produces “(* (== (* (++cpp))))+3".
Now, cpp points to cp + 1. After applying the “++” operator, cpp points to cp + 2. Then the first dereference (“*”)
isto c + 1, and applying the decrement operator “~-" changes the entry in the location cp + 2tobec + 1 - 1,o0r

c. The second dereference (“*”) thus is *c, or c[0], or the string “ENTER”. Adding 3 to this value takes us to c[0] +
3, which is the string “ER”.

So the printf on line 13 prints the string ER with a trailing blank and no trailing newline.

After this, cpp points to cp + 2 and cp[2] points to c. The other variables are unchanged.

Line 14: *cpp[-2]+3

Again, we fully parenthesize this to get (* (cpp[-2]))+3.

As cpp points to cp + 2, the dereference “cpp[-2]”isto * (cp + 2 - 2) or *cp,orc + 3. Then the dereference
“+” takesus to * (¢ + 3),or c[3], or the string “FIRST”. Adding 3 to this takes us to c[3] + 3, or which is the string
“ST,"

So the printf on line 14 prints the string ST with no trailing newline.

Version of September 20, 2019 at 8:58pm Page 1 of



ECS 36A, Programming and Problem Solving Fall Quarter 2019

Line 15: cpp[-1] [-1]+1

As cpp still points to cp + 2, the dereference “cpp[-1]1"isto * (cp + 2 - 1) or * (cp+l),or ¢ + 2. Then the next
“[-1]"takesusto * (c + 2 — 1),or *(c + 1),orc[1],or the string “NEW’. Adding 1 to this takesustoc[1] + 1,
or which is the string “EW”.

So the printf on line 15 prints the string EW with a trailing newline.

Result

So the result of this program is the line
POINTER STEW

Credit

This problem is from Alan Feuer’s excellent book The C Puzzle Book (Addison-Wesley Professional, Boston, MA;
©1998; ISBN 978-0-201-60461-0). This document has a slightly modified version by Matt Bishop. Only changes
necessary to get it to compile without warnings were made. The C code analyzed above is as in the original.

Version of September 20, 2019 at 8:58pm Page 2 of



