
ECS 36A, Programming and Problem Solving Fall Quarter 2019

Pointer Stew
This is a puzzle that uses pointers and arrays in a complex manner. If you completely understand how this works,

you definitely know your C pointers and arrays.

The Program
Line numbers are included for reference; they don’t appear in the source code, of course.

1 # i n c l u d e <s t d i o . h>
2 char ∗c [] = {
3 ”ENTER” ,
4 ”NEW” ,
5 ”POINT” ,
6 ”FIRST”
7 } ;
8 char ∗∗ cp [] = { c +3 , c +2 , c +1 , c } ;
9 char ∗∗∗ cpp = cp ;

10 i n t main (void)
11 {
12 p r i n t f (”%s ” , ∗∗++ cpp) ;
13 p r i n t f (”%s ” , ∗−−∗++cpp +3) ;
14 p r i n t f (”%s ” , ∗ cpp [−2]+3) ;
15 p r i n t f (”%s \n ” , cpp [−1][−1]+1) ;
16 re turn (0) ;
17 }

Analysis
Line 12: **++cpp

Here, cpp points to cp. As cp is an array of pointers to pointers to characters, the “++” changes cpp to point to cp +
1. Then the first dereference (“*”) is to c + 2, and the second dereference (“*”) is to *(c + 2), or c[2], or the string
“POINT”.

So the printf on line 12 prints the string POINT with no trailing newline.
After this, cpp points to cp + 1. The other variables are unchanged.

Line 13: *--*++cpp+3

First, we apply the rules of precedence to parenthesize this expression. This produces “(*(--(*(++cpp))))+3”.
Now, cpp points to cp + 1. After applying the “++” operator, cpp points to cp + 2. Then the first dereference (“*”)
is to c + 1, and applying the decrement operator “--” changes the entry in the location cp + 2 to be c + 1 - 1, or
c. The second dereference (“*”) thus is *c, or c[0], or the string “ENTER”. Adding 3 to this value takes us to c[0] +
3, which is the string “ER”.

So the printf on line 13 prints the string ER with a trailing blank and no trailing newline.
After this, cpp points to cp + 2 and cp[2] points to c. The other variables are unchanged.

Line 14: *cpp[-2]+3

Again, we fully parenthesize this to get (*(cpp[-2]))+3.
As cpp points to cp + 2, the dereference “cpp[-2]” is to *(cp + 2 - 2) or *cp, or c + 3. Then the dereference

“*” takes us to *(c + 3), or c[3], or the string “FIRST”. Adding 3 to this takes us to c[3] + 3, or which is the string
“ST”.

So the printf on line 14 prints the string ST with no trailing newline.

Version of September 20, 2019 at 8:58pm Page 1 of 2

ECS 36A, Programming and Problem Solving Fall Quarter 2019

Line 15: cpp[-1][-1]+1

As cpp still points to cp + 2, the dereference “cpp[-1]” is to *(cp + 2 - 1) or *(cp+1), or c + 2. Then the next
“[-1]” takes us to *(c + 2 - 1), or *(c + 1), or c[1], or the string “NEW”. Adding 1 to this takes us to c[1] + 1,
or which is the string “EW”.

So the printf on line 15 prints the string EW with a trailing newline.

Result
So the result of this program is the line

POINTER STEW

Credit
This problem is from Alan Feuer’s excellent book The C Puzzle Book (Addison-Wesley Professional, Boston, MA;
c©1998; ISBN 978-0-201-60461-0). This document has a slightly modified version by Matt Bishop. Only changes

necessary to get it to compile without warnings were made. The C code analyzed above is as in the original.

Version of September 20, 2019 at 8:58pm Page 2 of 2

