
ECS 36A, April 17, 2023

April 14, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

• Be sure you use this command to run your program in the CSIF before
submitting it to Gradescope:
gcc –ansi –pedantic –Wall filename.c –o filename

This is the command Gradescope uses to compile your progrm!
• The following causes compile errors:

for(int x = 0; x < maxval; x++)
• Not part of the C99 standard

• TA’s Office Hours: MWF 10:00am–11:00am in 53 Kemper

April 14, 2023 ECS 36A, Spring Quarter 2023 2

How to Copy to/from the CSIF

• Download file f to CSIF:
1. Activate the VPN that connects you to the CSIF (like Pulse)
2. Give the following command on your computer:

scp f pc12.cs.ucdavis.edu:
The file f is now in your CSIF home directory

• Upload file f from CSIF:
1. Activate the VPN that connects you to the CSIF (like Pulse)
2. Give the following command on your computer:

scp pc12.cs.ucdavis.edu:f .
The file f is now in the current working directory/folder on your system

April 14, 2023 ECS 36A, Spring Quarter 2023 3

Pointers

• A variable containing the address of another variable
• Example:

int x = 0;

int *px;

px = &x;

printf(“x = %d, px = %p, *px = %d\n”, x, px, *px);

• Operators:
• &variable: address of variable
• *variable: what is in the memory location with the address stored in variable

April 14, 2023 ECS 36A, Spring Quarter 2023 4

In Pictures

April 14, 2023 ECS 36A, Spring Quarter 2023 5

v 0x7fff34293234

0x7fff34293pv

print(“v = %d\n”, v);
• prints “234” (without the “s, ending in newline)
print(“pv = %p\n”, (void *)pv);
• prints “0x7fff34826” (without the “s, ending in

newline)
print(“*pv = %d\n”, *py);
• prints “234” (without the “s, ending in newline)

0x7fff34826

Function Arguments (Review)

void swap(int a, int b)

{

int tmp;

tmp = a;

a = b;

b = tmp;

}

April 14, 2023 ECS 36A, Spring Quarter 2023 6

a b tmp

13 5

a b tmp

13 5 13

a b tmp

5 5 13

a b tmp

5 13 13

Function Arguments as Pointers
void swap(int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

}

April 14, 2023 ECS 36A, Spring Quarter 2023 7

13

5

x

y

a

b

tmp 13

5

13

And On The Calling End (Review)

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(x, y);

printf(“x = %d, y = %d\n”, x, y);

April 14, 2023 ECS 36A, Spring Quarter 2023 8

x y

13 5

x y

13 5

And On The Calling End

x = 13;

y = 5;

printf(“x = %d, y = %d\n”, x, y);

swap(&x, &y);

printf(“x = %d, y = %d\n”, x, y);

April 14, 2023 ECS 36A, Spring Quarter 2023 9

x y

13 5

x y

5 13

Scope

• When multiple variables have the same name, which one is used?
• Rule #1: two variables cannot have the same name in a block (e.g., function)

• Use the variable that is “nearest” to the reference
• That’s the one in scope

April 14, 2023 ECS 36A, Spring Quarter 2023 10

C Arrays

April 14, 2023 ECS 36A, Spring Quarter 2023 11

0 21 3 4 5 6 7 8

xyzzy[0]

xyzzy[1]

xyzzy[2]

xyzzy[3]

xyzzy[4]

xyzzy[5] xyzzy[7]

xyzzy[6] xyzzy[8]

Arrays as Pointers and Vice Versa

• Arrays are simply another way to express pointers
• So xarray[0] and *xarray refer to the same memory location
• And xarray[12] and *(xarray+12) refer to the same memory location

April 14, 2023 ECS 36A, Spring Quarter 2023 12

Pointer Arithmetic

• type *x;
• x + 10 refers to the 10th type object; so if type is an int, x + 10 refers to the 10th

integer memory location beyond that which x points to
• This is why pointers and array names are equivalent

• x + n: refers to the nth type object beyond x
• x – n: refers to the nth type object before x
• x – y: refers to the number of type objects between x and y
• x + y: meaningless!!!

April 14, 2023 ECS 36A, Spring Quarter 2023 13

Multidimensional Arrays

• A 2-dimensional array look like this:

• Stored in row-major order as consecutive elements of a row are
stored next to each other
• Column-major order has consecutive elements of a column stored next to

each other

April 14, 2023 ECS 36A, Spring Quarter 2023 14

x[0] x[0][0] x[0][1] x[0][2] x[0][3]

x[1] x[1][0] x[1][1] x[1][2] x[1][3]

x[2] x[2][0] x[2][1] x[2][2] x[2][3]

