ECS 36A, April 28, 2023

Announcements

- No office hours today
- TA's new office hours on Friday are 12:00 noon - 1:00pm
- Tutoring is available from the CS Tutoring Club
- All homework 2 and extra credit 2 problems have Gradescope running
- Check out the announcement about HackDavis 2023

Command-Line Arguments

- Command is echo hi there
- Declaration of main function:
int main(int argc, char *argv[])
- Sometimes written as:

Visually:

Handling Options

- Options say how a particular invocation of a program works
- They are usually preceded by "-" or "--"
- To the program, its just another parameter
- Usually handled by setting a flag of some kind internally

Comma Operator

- $a=(b, c)$: evaluate b, evaluate c, assign value of c to a
- Parentheses needed as "," has lowest precedence
- Example: suppose $a=5, b=2$; then
$x=(a=a+5, b++)$
sets $a=10, b=3$, and $x=2$
- Note it's "b++", so the value is used and then b is incremented
- Common use: prompting is a loop
- Example:
while(printf("> "), scanf("\%d", \&x) != EOF)

Useful String Functions

- Length: strlen(str) gives length of string str
- Copy: $\operatorname{strcpy}(\mathrm{a}, \mathrm{b})$ copies contents of b into a
- Better variant: strncpy $(\mathrm{a}, \mathrm{b}, \mathrm{n})$ copies first n characters of b into a , and if room adds a trailing ' $\backslash 0$ '
- Concatenation: $\operatorname{strcat}(\mathrm{a}, \mathrm{b})$ appends contents of b to a
- Better variant: strncat($\mathrm{a}, \mathrm{b}, \mathrm{n}$) appends first n characters of b to a , and if room adds a trailing ' $\backslash 0$ '
- Comparison: $\operatorname{strcmp}(\mathrm{a}, \mathrm{b})$ compares string a to string b, returns positive if a comes first, negative if b comes first, 0 if two are equal
- strncmp(a, b, n) does same but uses only first n characters of strings a, b

Greatest Common Divisor

- Find the largest integer that divides two other integets
- Example: $\operatorname{gcd}(8,12)=4$ as $8 / 4=2$ and $12 / 4=3$, and no larger number does that
- Example: $\operatorname{gcd}(126,28)=14$
- Euclid's Algorithm
- $\operatorname{gcd}(1071,462)$:
- $1071=2 \times 462+147$
- $462=3 \times 147+21$
- $147=7 \times 21+0$
- So $\operatorname{gcd}(1071,462)=21$

