
ECS 36A, May 1, 2023

May 1, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

• Tutoring is available from the CS Tutoring Club
• All homework 2 and extra credit 2 problems have Gradescope running
• Executables of the answers to problems in homework 2 are on the

CSIF in ~bishop/ecs36a/hw2

May 1, 2023 ECS 36A, Spring Quarter 2023 2

Reversing a String

• Approach:
• If 0 or 1 characters in string, it’s reversed
• Otherwise swap the first and last chars, and reverse the string between them

• Suggested interface:
void reverse(char *str, int b, int e)

May 1, 2023 ECS 36A, Spring Quarter 2023 3

The string to be reversed

Index of the first char in
the string to be reversed

Index of the last char in
the string to be reversed

Here’s What It Looks Like

May 1, 2023 ECS 36A, Spring Quarter 2023 4

reverse(“abcde”, 0, 4)

reverse(“ebcda”, 1, 3)

reverse(“edcba”, 2, 2)

call

call

return

reverse(“edcba”, 1, 3)

reverse(“edcba”, 0, 4)

return

Tower of Hanoi

• Problem: move all 3 disks from peg A to peg C
• Restriction: can never put a larger disk on a smaller one!
• Approach: move all but bottom to peg B from peg A, move bottom

one from A to C, then move stack from B to C

May 1, 2023 ECS 36A, Spring Quarter 2023 5

A B C

Tower of Hanoi

• Move top disk from A to C

May 1, 2023 ECS 36A, Spring Quarter 2023 6

A B C

Tower of Hanoi

• Move top disk from A to B
• Now we can put C onto B and we have transferred the stack

May 1, 2023 ECS 36A, Spring Quarter 2023 7

A B C

Tower of Hanoi

• Move top disk from C to B
• Stack is moved

May 1, 2023 ECS 36A, Spring Quarter 2023 8

A B C

Tower of Hanoi

• Move top disk from A to B
• Now move disks from peg B to C
• Cannot do it directly; if we put the top one on peg C, we must move

last peg from B to A. S put the top one on A

May 1, 2023 ECS 36A, Spring Quarter 2023 9

A B C

Tower of Hanoi

• Move top disk from A to B
• Now move disks from peg B to C
• Cannot do it directly; if we put the top one on peg C, we must move

last peg from B to A. S put the top one on A

May 1, 2023 ECS 36A, Spring Quarter 2023 10

A B C

Tower of Hanoi

• Move top disk from B to C
• Almost done!

May 1, 2023 ECS 36A, Spring Quarter 2023 11

A B C

Tower of Hanoi

• Move top disk from A to C
• And done!

May 1, 2023 ECS 36A, Spring Quarter 2023 12

A B C

Sequence of Moves

• Move top disk from tower A to tower C
• Move top disk from tower A to tower B
• Move top disk from tower C to tower B
• Move top disk from tower A to tower C
• Move top disk from tower B to tower A
• Move top disk from tower B to tower C
• Move top disk from tower A to tower C

May 1, 2023 ECS 36A, Spring Quarter 2023 13

Sequence of Moves

• Move top disk from tower A to tower C
• Move top disk from tower A to tower B
• Move top disk from tower C to tower B
• Move top disk from tower A to tower C
• Move top disk from tower B to tower A
• Move top disk from tower B to tower C
• Move top disk from tower A to tower C

May 1, 2023 ECS 36A, Spring Quarter 2023 14

Move top 2 disks from A to B

Move top 2 disks from B to C

In Program, Reading Integer

/* read in a line, including the newline */

while(fgets(buf, MAXINPUT, stdin) != NULL){

/* convert this to an integer; report an error if needed */

if (sscanf(buf, "%d", &n) != 1 || n <= 0){

fprintf(stderr, "Enter a positive integer\n");

continue;

}

.

}

/* got an EOF */

May 1, 2023 ECS 36A, Spring Quarter 2023 15

C Compiler Structure

May 1, 2023 ECS 36A, Spring Quarter 2023 16

main.c C Preprocessor (cpp)

C Compiler Structure

May 1, 2023 ECS 36A, Spring Quarter 2023 17

C Compiler (cc1)main.c
main.i

C Preprocessor (cpp)

C Compiler Structure

May 1, 2023 ECS 36A, Spring Quarter 2023 18

C Compiler (cc1)main.c
main.i

main.s

C Preprocessor (cpp)

Assembler (as)

C Compiler Structure

May 1, 2023 ECS 36A, Spring Quarter 2023 19

C Compiler (cc1)

Linker (ld)

main.c

main.o

main.i

main.s

C Preprocessor (cpp)

Assembler (as)

libraries

C Compiler Structure

May 1, 2023 ECS 36A, Spring Quarter 2023 20

C Compiler (cc1)

Linker (ld)

main.c

main.o

main.i

main.s

C Preprocessor (cpp)

Assembler (as)a.out

libraries

C Preprocessor

• All lines begin with #
• #define
• #undef
• #include

May 1, 2023 ECS 36A, Spring Quarter 2023 21

#define

#define BOARD 8*8
• Replace every occurrence of the word “BOARD” with “8*8”

• Usually used to parameterize something; examples from stdio.h:
• NULL is a macro (0)
• EOF is a macro (–1)

• Warning: this is textual substitution, so do not treat them as
variables!

May 1, 2023 ECS 36A, Spring Quarter 2023 22

Watch Out For This

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE 8+2

• Now every occurrence of SIDE is replaced by 8+2
char chess[SIDE*SIDE];

becomes
char chess[8+2*8+2];

So the board has 26 squares

May 1, 2023 ECS 36A, Spring Quarter 2023 23

Do This

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE (8+2)

• Now every occurrence of SIDE is replaced by (8+2)
char chess[SIDE*SIDE];

becomes
char chess[(8+2)*(8+2)];

So the board has 100 squares

May 1, 2023 ECS 36A, Spring Quarter 2023 24

Parameterized Macro

#define isbetween0and9(x) ((0<=(x))&&((x)<=9))
• isbetween0and9(4) returns 1 and isbetween0and9(–100) returns 0
• Beware — whatever is put for x is evaluated every time x occurs in the

macro definition
x = 9; . . . isbetween0and9(x++)
becomes
x = 9; . . . ((0<=(x++))&&((x++)<=9))
or
x = 9; . . . ((0<=(9))&&((10)<=9))
which returns false (as 10 > 9)

May 1, 2023 ECS 36A, Spring Quarter 2023 25

#undef

• Delete a macro definition
#define XYZZY “dizzy”

. . .

#undef XYZZY
int XYZZY = –20;

• Without the #undef, the declaration becomes:
int “dizzy” = –20;

which gives an error

May 1, 2023 ECS 36A, Spring Quarter 2023 26

#include

• Interpolate file into current source code
• When it does this, it preserves the line numbers of the original files by

using these:
9 “macros.c”

Next line is treated as line 9 by the compiler and debuggers

May 1, 2023 ECS 36A, Spring Quarter 2023 27

C and Files

• Files represented by a file pointer
• Note: the actual representation in Linux is a file descriptor, which is a non-

negative integer, but that is non-portable; the file pointer is
• 3 predefined file pointers: stdin, stdout, stderr

• File pointer contains information:
• Which file is being referenced (ie, the file descriptor)
• Whether opened for reading, writing, or appending
• Where in the file the next access is to occur
• And lots of other information not relevant here

May 1, 2023 ECS 36A, Spring Quarter 2023 28

