
ECS 36A, May 8, 2023

May 8, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. On Wednesday, May 10, we will resume in-person classes
2. I will also hold office hours in person beginning then
• Until then, same Zoom link for both until then:

https://ucdavis.zoom.us/j/95840281592?pwd=a1NhNmpLNFp2VVVrYkpGY3pDcWdlQT09

3. The midterm will be next Friday, May 12

May 8, 2023 ECS 36A, Spring Quarter 2023 2

Another Recursive Program: sort.c

• This sorts integers by finding the smallest number and putting it at
the beginning
• Basic idea:

if number of elements in list is 1 or 0:
list is sorted – just return

find the smallest number in the list
swap it and the first number
sort the rest of the list

May 8, 2023 ECS 36A, Spring Quarter 2023 3

Problem

• sort.c reads from an array of known length
• User must enter numbers into the program
• The compiler can compute the length (or the user can enter it)
So how do we get around this?

May 8, 2023 ECS 36A, Spring Quarter 2023 4

Dynamic Memory Allocation

• Static memory allocation occurs when you declare a variable
int num;

• Compiler creates space for this variable
• There is also a pool of memory (the “heap”) that is available but

initially unused
• Dynamic memory occurs when you obtain memory space this pool
• Allocate: obtaining the space from the pool
• Allocation: the amount of space you get
• Deallocate, free: releasing memory that has been allocated; it goes back to

the pool

May 8, 2023 ECS 36A, Spring Quarter 2023 5

A Useful Operator

• To get the number of bytes in a data type, use sizeof
• Example: on a 32-but machine:
• sizeof(char) is 1
• sizeof(int) is 4
• sizeof(float) is 4
• sizeof(double) is 8

• Works for variables, too
• if a is an int, sizeof(a) is 4

May 8, 2023 ECS 36A, Spring Quarter 2023 6

But Be Careful!

char a[100]

• Tempting to get the size of an array like this:
sizeof(a)

• Here, a is a pointer constant, so sizeof returns the number of bytes in that
pointer, not the size of the array!

• To get the number of bytes in an array, use
sizeof(a[0]) * 100

where 100 is the number of elements in the array
• The a[0] is one element; works as all elements are of the same type

May 8, 2023 ECS 36A, Spring Quarter 2023 7

Allocation Functions: malloc()

• Basic function
void *malloc(size_t space)

• Allocate space bytes of memory, returning its address; returns NULL if
not available
• Type size_t is same as unsigned int

• Declared void * so that it can be coerced into any type of pointer
char *p;

if ((p = (void *) malloc(100)) == NULL)

error handling

May 8, 2023 ECS 36A, Spring Quarter 2023 8

Allocation Functions: calloc()

• Variant
void *calloc(size_t nelt, size_t space)

• Like malloc, but:
• Gives you space in terms of elements and size of element, rather than a

number of bytes
• Memory is zeroed out; malloc() does not do so, and whatever is in that

memory before call to malloc() is there once allocated

May 8, 2023 ECS 36A, Spring Quarter 2023 9

Allocation Functions: realloc()

• Enlargening space already allocated (say pmem points to it):
void *realloc(void *pmem, size_t nbytes)

• This allocates nbytes of space, and the contents of *pmem are copied
into the beginning of the new space
• The new space may simply extend what pmem points to
• Or, it may be completely new space, in which case what pmem points to is

deallocated
• If insufficient memory available, returns NULL and leaves the space pmem

points to untouched, neither moved nor deallocated

May 8, 2023 ECS 36A, Spring Quarter 2023 10

Allocation Functions: realloc()

• Common way to use this:
if ((pmem = realloc(pmem, 1000)) == NULL) . . .
• On success, pmem now points to a chunk of memory of size 1000 bytes
• On failure, pmem is now NULL — and you lose the address of the memory

pmem used to point to

• Here’s the right way:
tempptr = realloc(pmem, 1000);

if (tempptr == NULL) error handling;

else pmem = tempptr;

May 8, 2023 ECS 36A, Spring Quarter 2023 11

Deallocation Function: free()

• To release memory allocated by one of the allocation functions, use:
• void free(void *pmem)
• If pmem is NULL, this does nothing
• Do not free memory that has already been freed!
• Called a double free error and can often be a vulnerability
• In all cases, the result is undefined

May 8, 2023 ECS 36A, Spring Quarter 2023 12

Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once

May 8, 2023 ECS 36A, Spring Quarter 2023 13

