
ECS 36A, May 10, 2023

May 10, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. Everything through today is now on the Canvas and nob web sites
2. On Wednesday, May 10, we will resume in-person classes
3. I will also hold office hours in person beginning then
4. The midterm will be Friday, May 12

May 10, 2023 ECS 36A, Spring Quarter 2023 2

Structures

• Data structure used to group elements of a different type together
• Example: student registration number database
• See element below

May 10, 2023 ECS 36A, Spring Quarter 2023 3

int regnumber;

char *name;
struct student {

char *name; /* student name */
int regnumber; /* registration number */

};

type of structure
field

Referring to a Structure

Here’s how you declare a variable of the structure:
struct student xyzzy, *pxyzzy;
It’s clumsy to write that, so you can define an alias for the type:
typedef struct student STUDENT;
The latter essentially produces a new type, STUDENT, that can be used
wherever struct student can:
STUDENT xyzzy, *pxyzzy;

May 10, 2023 ECS 36A, Spring Quarter 2023 4

Another Declarations

struct student {
char *name; /* student name */
int regnumber; /* registration number */

} xyzzy, *pxyzzy;

• Declares type struct student and 2 variables, xyzzy (an
instance of struct student) and pxyzzy (a pointer to an
instance of struct student)

May 10, 2023 ECS 36A, Spring Quarter 2023 5

And Now, With a Typedef

typedef struct student {
char *name; /* student name */
int regnumber; /* registration number */

} STUDENT;
STUDENT xyzzy, *pxyzzy;
This defines a new type, STUDENT, which is the same as the type
struct student. Here xyzzy is a variable of type STUDENT and
pxyzzy is a pointer to an instance of STUDENT.

May 10, 2023 ECS 36A, Spring Quarter 2023 6

But Be Careful

• typedef defines an alias for a type
• #define does textual substitution
typedef int *PINT;
PINT a, b, c
• Now a, b, and c are all pointers to integers
#define PINT int *
PINT a, b, c; /* becomes int * a, b, c; */
• Now a is a pointer to an integer, and b and c are integers

May 10, 2023 ECS 36A, Spring Quarter 2023 7

Linked List

• A list composed of instantiations of structures
• One element is whatever is to be sorted (int, for us)
• Another element is a pointer to the next element; NULL if none

May 10, 2023 ECS 36A, Spring Quarter 2023 8

13 82 16 5 –1 99 00

Structure for This List

struct node {
int num;
struct node *next;

};
struct node *list;

May 10, 2023 ECS 36A, Spring Quarter 2023 9

This holds the integer
that you read in

This holds the pointer
to the next element
in the linked list; it’s
NULL if it’s at the end

This points to the first
element of the list

Changing How Memory Is Allocated

• Now you can allocate memory one element (“node”) at a time
• Insertion at beginning is like this (see ”linked.c”, ll. 72–76):
• new->next = first;
• list = new;

• Insertion in the middle between prev and succ is (see “linked.c”, ll.
78–97):
• new->next = succ;
• prev->next = new;

• Insertion at the end nomore of the list (same as above):
• nomore->next = new;

May 10, 2023 ECS 36A, Spring Quarter 2023 10

Insertion

May 10, 2023 ECS 36A, Spring Quarter 2023 11

headList

1

235 12 49

Insertion: At the Beginning of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 12

headList

1

235 12 49

First, change the pointer in the new node to point to
the head of the list (where headList points; just copy
the pointer)

Insertion: At the Beginning of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 13

headList

1

235 12 49

Next, change the pointer to the head of the list to
point to the new node

Code for This

• new is a pointer to the new node, headList points to the head of the
list
• First, make new point to the old head. of the list
new->next = headList;

• Next, make the pointer to the head of the list point to new
headList = new;

May 10, 2023 ECS 36A, Spring Quarter 2023 14

Insertion: In the Middle of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 15

headList

15

235 12 49

First, scan down the list until you reach the node
before which the new node goes.

new node goes after this one

Insertion: In the Middle of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 16

headList

15

235 12 49

Change the pointer in the new node to point to the
first node after where the new node is to go

new node goes after this one

Insertion: In the Middle of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 17

headList

15

235 12 49

Next, have the pointer in the node before where the
new node is to go point to the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node that new goes after
for(p = headList;

p != NULL && p->next < new->next;
p = p->next)

/* do nothing ;
• Next, change the pointer in new to point to the node after where this one goes
new->next = p->next;
• Finally, make the node p points to point to new
p->next = new;

May 10, 2023 ECS 36A, Spring Quarter 2023 18

Insertion: At the End of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 19

headList

1

235 12 49

First, scan down the list until you reach the end node

new node goes after this one

Insertion: At the End of the List

May 10, 2023 ECS 36A, Spring Quarter 2023 20

headList

68

235 12 49

Next, change the pointer in the end node to point to
the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node at the end
for(p = headList;

p != NULL && p->next != NULL;
p = p->next)

/* do nothing */;
• Next, change the pointer in what p points to to point to new
p->next = new;
• This may be an excess, but make sure new’s pointer field is NULL
new->next = NULL;

May 10, 2023 ECS 36A, Spring Quarter 2023 21

Multiple Arrays

• Need to store several data of different types about something
• Example: sort planets by their diameters
• Use 2 arrays
• char *names[9]
• int diameters[9]

• When sorting, need to keep both arrays aligned
• So when swapping 2 elements of array diameter, the corresponding elements

of array names must also be swapped

• Alternate approach: use structures!

May 10, 2023 ECS 36A, Spring Quarter 2023 22

Same with Structures

• Instead of 2 arrays, combine into one structure for each element, and
use an array of structures

struct celestial {
char *name; /* pointer to name of planet */
int diameter; /* diameter of planet in km */

} planets[9];
• This allocates space for 9 planets
• When you swap elements, you only need to swap one, not two, as in

the parallel arrays case

May 10, 2023 ECS 36A, Spring Quarter 2023 23

And now a Word About argv

void main(int argc, char *argv[])
• Program name is argv[0]
• One way to go down the arguments (j is declared as int j):
for(j = 1; j < argc; i++)

printf(“Argument: %s\n”, argv[1]);
• And the same thing, but using pointers (a is declared as char **a):
for (a = argv+1; *a; a++)

printf(“Argument: %s\n”, *a);

May 10, 2023 ECS 36A, Spring Quarter 2023 24

