
ECS 36A, May 15, 2023

May 15, 2023 ECS 36A, Spring Quarter 2023 1



Announcements

1. We haven’t graded the midterms yet; our target date is by Friday

May 15, 2023 ECS 36A, Spring Quarter 2023 2



Static Debugging

• Use printf’s to print what is going on inside the program
• Or anything else that prints

• You may need to print to stderr or file

May 15, 2023 ECS 36A, Spring Quarter 2023 3



sample1.c

• Goal is to add 2 to j 100 times
• But at end, j = 2
• Debug:
• Put a printf right after line 16 (the j += 2); print both i and j
• Note i = 100, j = 2
• Put printf right before line 16 and have it print i and j
• Oops . . . prints once
• Clear j += 2 not in for loop
• Look closely at line 16; note ending semicolon

May 15, 2023 ECS 36A, Spring Quarter 2023 4



sample1.c

• Goal is to add 2 to j 100 times
• But at end, j = 2
• Debug:
• Put a printf right after line 16 (the j += 2); print both i and j
• Note i = 100, j = 2
• Put printf right before line 16 and have it print i and j
• Oops . . . prints once
• Clear j += 2 not in for loop
• Look closely at line 16; note ending semicolon

May 15, 2023 ECS 36A, Spring Quarter 2023 5



sample2.c

• Goal is to double s until it is more than 100
• But it goes into an infinite loop, never ending
• Debug:
• i is supposed to change to 0 in the if statement, so print s and i there
• The printf statement recurs repeatedly, when j is more than 100
• So we need to look at the value of i to see if it is reset to 1 somewhere
• Print the value of i and s right after the while statement
• It shows I is now 1, as we expect (otherwise we would not reenter the loop)
• So check the while expression
• In it, I is assigned 1; we need to make the = sign == for a test

May 15, 2023 ECS 36A, Spring Quarter 2023 6



sample3.c

• Goal is to count the number of digits, spaces, other characters
• But it prints 11 digit counts (last one is negative) and 0 blanks, and 

828 others!
• Two bugs
• An extra number printed with the digit counts
• Everything but the ”other” has a count of 0 – and we had digits and spaces in 

the file

May 15, 2023 ECS 36A, Spring Quarter 2023 7



Extra Digit Bug

• The digits are printed in the for loop at the end
• It prints 11 but should print 10
• Print the values of i each time through the loop
• And i goes to 11, so examine the exit condition of the for loop
• It should stop when i is 10, but instead prints a value then
• Change the “<=“ to “<“ (or the ”10” into a “9”) to solve this

May 15, 2023 ECS 36A, Spring Quarter 2023 8



All Characters are “Other”

• The characters are classified in the while loop, so it’s clear the char c is not 
set properly
• Print the value of c right after the while statement
• Output (c is ‘’) looks like c isn’t read; this is a non-printing character
• Print the value of c as both a character and a hexadecimal number
• It comes out as 0x01 so c is being set to 1
• It’s assigned in the while expression, so we look there
• Note != has higher precedence than =, so while chars are read, getchar() 

returns 1 as the condition is true, and so c is assigned 1.
• To fix this, use parenthesis: “(c = getchar()) != EOF”

May 15, 2023 ECS 36A, Spring Quarter 2023 9



gdb

• A dynamic debugger
• To run it, compile your program with the –g option
• This adds in debugging information gdb uses
• You can use gdb without it but it simplifies the use greatly

• Then load it into gdb by:
gdb executable

• Note you use the executable file and not the source code file
• You can also load the executable once gdb starts

May 15, 2023 ECS 36A, Spring Quarter 2023 10



Inside the gdb Shell

• Once started, you get a prompt “(gdb)”
• If you forgot to name the executable in the command line:

(gdb) file executable
• One other handy feature

(gdb) help
• You will get a list of commands you can ask for help on
• Then type

(gdb) help command

May 15, 2023 ECS 36A, Spring Quarter 2023 11



Executing the program

• Type:
(gdb) run arg1 . . . argn

• This runs the program with command line arguments arg1 through 
argn
• If there are no command line arguments, just type ``run’’

• If there are no problems, the program runs to completion
• If the program stop with a message like this, there’s a problem
Program received signal SIGSEGV, Segmentation fault.
0x00005555555551b5 in nfact (n=<error reading variable: Cannot access 
memory at address 0x7fffff7fefec>) at nfact2.c:12

May 15, 2023 ECS 36A, Spring Quarter 2023 12



Stopping the Program Before It Ends

• A breakpoint causes the execution to stop at that point
• Here’s an example:

(gdb) break 15

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

• This causes execution to stop when it reaches line 15
• If you have multiple source files, name the file before the number:

(gdb) break nfact2.c:15

• It shows some useful information
Breakpoint 1, nfact (n=15) at nfact2.c:15

15 x = nfact(n+1);

May 15, 2023 ECS 36A, Spring Quarter 2023 13


