
ECS 36A, May 17, 2023

May 17, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. We haven’t graded the midterms yet; our target date is by Friday

May 17, 2023 ECS 36A, Spring Quarter 2023 2

gdb

• A dynamic debugger
• To run it, compile your program with the –g option
• This adds in debugging information gdb uses
• You can use gdb without it but it simplifies the use greatly

• Then load it into gdb by:
gdb executable

• Note you use the executable file and not the source code file
• You can also load the executable once gdb starts

May 17, 2023 ECS 36A, Spring Quarter 2023 3

Inside the gdb Shell

• Once started, you get a prompt “(gdb)”
• If you forgot to name the executable in the command line:

(gdb) file executable
• One other handy feature

(gdb) help
• You will get a list of commands you can ask for help on
• Then type

(gdb) help command

May 17, 2023 ECS 36A, Spring Quarter 2023 4

Executing the program

• Type:
(gdb) run arg1 . . . argn

• This runs the program with command line arguments arg1 through
argn
• If there are no command line arguments, just type ``run’’

• If there are no problems, the program runs to completion
• If the program stop with a message like this, there’s a problem
Program received signal SIGSEGV, Segmentation fault.
0x00005555555551b5 in nfact (n=<error reading variable: Cannot access
memory at address 0x7fffff7fefec>) at nfact2.c:12

May 17, 2023 ECS 36A, Spring Quarter 2023 5

Stopping the Program Before It Ends

• A breakpoint causes the execution to stop at that point
• Here’s an example:

(gdb) break 15

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

• This causes execution to stop when it reaches line 15
• If you have multiple source files, name the file before the number:

(gdb) break nfact2.c:15

• It shows some useful information
Breakpoint 1, nfact (n=15) at nfact2.c:15

15 x = nfact(n+1);

May 17, 2023 ECS 36A, Spring Quarter 2023 6

Conditional Breakpoints

• Causes a breakpoint to stop execution when a condition is met
• Here’s an example:

(gdb) break 15 if n >= 20

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

• This causes execution to stop when it reaches line 15 and n is 20 or
more
• If you have multiple source files, name the file before the number:

(gdb) break nfact2.c:15 15 if n >= 20

May 17, 2023 ECS 36A, Spring Quarter 2023 7

What Can You Do When Stopped?

• You can continue the execution from the breakpoint:
(gdb) continue

• You can execute one statement at a time to step through the program
• If it encounters a function, it goes into that function and executes one

statement at a time

(gdb) step
• n (next) is like s but treats the function as part of the statement and does not

go into it

(gdb) next

May 17, 2023 ECS 36A, Spring Quarter 2023 8

Printing Values

• You can print the value of an expression
(gdb) print expression

• If you prefer hexadecimal
(gdb) print/x expression

May 17, 2023 ECS 36A, Spring Quarter 2023 9

Watchpoints

• Like breakpoints, but keyed to variables
(gdb) watch x

• Whenever x changes values, the program stops and gdb prints old
and new values of x

May 17, 2023 ECS 36A, Spring Quarter 2023 10

Other Useful Commands

• backtrace
• where
• These show the stack, that is, the functions that have been called and not yet

returned
• delete 2
• Delete breakpoint 2 (or watchpoint 2)

• info breakpoints
• List the breakpoints (and watchpoints)

• info frame
• Show the current frame

May 17, 2023 ECS 36A, Spring Quarter 2023 11

And now a Word About argv

void main(int argc, char *argv[])
• Program name is argv[0]
• One way to go down the arguments (j is declared as int j):
for(j = 1; j < argc; i++)
 printf(“Argument: %s\n”, argv[1]);
• And the same thing, but using pointers (a is declared as char **a):
for (a = argv+1; *a; a++)
 printf(“Argument: %s\n”, *a);

May 17, 2023 ECS 36A, Spring Quarter 2023 12

How Numbers and Letters Are Represented

• The computer stores these in binary representations
• Examples:
• 345 in binary is 0000 0000 0000 0000 0000 0001 0101 1001
• –345 in binary is 1111 1111 1111 1111 1111 1110 1010 0111

• This is two’s complement; flip the bits, add 1, and ignore overflow
• If you add these, you get 0000 0000 0000 0000 0000 0000 0000 0000
• ‘a’ is 97, which is 0110 0001
• Floats use a different format:
• 2.456 is 0100 0000 0001 1101 0010 1111 0001 1011

May 17, 2023 ECS 36A, Spring Quarter 2023 13

sign bit exponent mantissa

Type Coersion

int n;
float j = 2.456;
. . .
n = (int) j;
printf(“float is %f, int is %d\n”, j, n);

prints
 float is 2.456000, int is 2

May 17, 2023 ECS 36A, Spring Quarter 2023 14

Representation of Data

• But if we want the bitwise representation of 2.456, we need to use a
union

May 17, 2023 ECS 36A, Spring Quarter 2023 15

Unions

• Allows data to be viewed as multiple types
• Syntax is like a structure:
union intfloat {
 int un;
 float uj;
} t;

May 17, 2023 ECS 36A, Spring Quarter 2023 16

Unions

• So to get the representation of 2.456 in binary:
t.uj = 2.456
printf(“bit representation is 0x%x\n”, t.un);
• And this prints

bit representation is 0x401d2f1b

May 17, 2023 ECS 36A, Spring Quarter 2023 17

