
ECS 36A, May 24, 2023

May 24, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. Midterm statistics: mean, 60.89; median, 62; max, 94; min, 27;
standard deviation 13.14

2. Do not panic! Even though the midterm grades are not curved, the
final course grade will be, and the curving method will be
independent of your class standing; it will solely depend on your
grade.

May 24, 2023 ECS 36A, Spring Quarter 2023 2

Background

• System calls: interfaces to operating system functions
• Example: some Linux system calls
• I/O: reading, writing, networking, etc.
• Files: chown, chgrp, stat, etc.
• Resource usage: ulimit, getrlimit, etc.
• Timing: gettimeofday, time

• Library functions provide system-independent interface to them
• Also provide other features

May 24, 2023 ECS 36A, Spring Quarter 2023 3

C Library Functions

• The C library provides many functions that do useful things
• Standard I/O C library
• Math library

• Character type
• String to integer or float/double types
• Handling options
• Time
• Random numbers
• String and memory manipulation

May 24, 2023 ECS 36A, Spring Quarter 2023 4

Standard I/O Functions

• Implements open, read, write, close, and others
• Requires #include <stdio.h>
• Basis: streams or files
• Usually FILE * types
• Buffers input, output
• Predefined streams: stdin (input), stdout (output), stderr (error output)

May 24, 2023 ECS 36A, Spring Quarter 2023 5

Buffering

• For efficiency; goal is to reduce number of read, write system calls
• On read, the library reads a block of data
• The number of bytes in a block here depends on the system
• This is not the same thing as a block in a program; it’s a chunk of data

• The library then returns the amount of data requested, and keeps the
rest in memory
• On next library call, it returns the next byte without doing another call

to system
• This explains why ungetc() can only guarantee one char of pushback

May 24, 2023 ECS 36A, Spring Quarter 2023 6

Full Buffering in Standard I/O Library

• Typically used when reading/writing files
• Read: call to system call fills buffer; next call is when a read occurs

and buffer is empty
• Write: call to system call empties buffer; next call is when a write

occurs and the buffer is full
• Flushing: emptying the buffer; as noted, done automatically
• Use fflush() to do this manually

• On exit or return from main(), all buffers are flushed

May 24, 2023 ECS 36A, Spring Quarter 2023 7

Line Buffering in Standard I/O Library

• Typically used with line-oriented devices such as terminals
• Buffers flushed when newline encountered or buffer is full
• Doesn’t matter if buffer is for reading or for writing
• Also output is flushed when process reads from a line-buffered or unbuffered

stream

• Idea is to act like fully buffered I/O, except that reading/writing in
blocks is infeasible, as process can’t read a terminal beyond what has
been typed
• On exit or return from main(), all buffers are flushed

May 24, 2023 ECS 36A, Spring Quarter 2023 8

Unbuffered Streams in Standard I/O Library

• Don’t buffer anything
• On input, byte immediately made available to process
• Terminals usually need to be put into a special mode (called ``raw’’ mode) in

which no character processing is done; usual mode is called ``sane’’ or
``cooked’’

• On output, character is immediately written to device or file

May 24, 2023 ECS 36A, Spring Quarter 2023 9

Useful Functions: Positioning for Read/Write

• Every stream has a read/write pointer (rw-pointer) pointing to where
the next byte is to be read or written
• fgetpos(fp, pos): gets current position pos of rw-pointer of fp
• ftell(fp, pos): return position of rw-pointer of fp

• fgetset(fp, pos): set current position pos of rw-pointer of fp
• rewind(fp): reset rw-pointer to 0 (the beginning of the file)

• fseek(fp, offset, whence): set current position of rw-pointer of fp to
offset bytes from whence
• whence is SEEK_SET (beginning), SEEK_CUR (current position), or SEEK_END

(from the end)

May 24, 2023 ECS 36A, Spring Quarter 2023 10

Strings to Numbers

• int atoi(char *str), long int atol(char * str): convert str to int or long,
respectively
• double atof(char * str): convert str to double
• No error checking
• If any non-digit or non-floating character is found, these stop converting and

return what they have converted

May 24, 2023 ECS 36A, Spring Quarter 2023 11

Strings to Numbers

• long int strtol(char *str, char **eostr, int base): convert str to long it
in base base; return a pointer eostr to first char that is not converted
• If eostr is NULL, the end pointer is not returned
• If *eostr is ‘\0’, there were no errors
• If no digits, the value of str is put into *eostr and returns 0

• float strtof(char *str, char **eostr): convert str to float
• double strtod(char *str, char **eostr): convert str to double

May 24, 2023 ECS 36A, Spring Quarter 2023 12

Processing Options

• int getopt(int argc, char **argv, char *optstr): process the arguments
in argv looking for those that begin with “-” or “--” and are in optstr
• If character in optstr followed by ”:”, the option has an argument

• External variables are char *optarg, int optind
• Returns the character option
• Or –1 if there are no more options

• On return, optind is index of next option to be processed and optarg
points to the option’s argument (if any)

May 24, 2023 ECS 36A, Spring Quarter 2023 13

