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Announcements

1. Homework 4 is out, as is the Gradescope.
2. Friday’s lecture will be recorded and posted to Canvas
• It will also be posted to AggieVideo

3. I will be out of town on Thursday and Friday, so office hours on 
Friday are cancelled.

4. Would extending the due date for homework 3 be helpful?
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Breaking a Line into Alphanumeric Words

• You can use strtok()
• You have to exclude everything except alphanumerics
• So the end of token characters has to be everything but alphanumerics!

• You can use fscanf() and a pattern
• If you do this, the pattern should be only alphanumerics
• You also have to go between alphanumeric patterns as fscanf() will not

• There’s a better way!
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Breaking a Line into Alphanumeric Words

• Read one line at a time; for each line . . .
• If the first character is an alphanumeric:

1. Advance until you do not see an alphanumeric, copying each character into 
an array; add a ‘\0’ after it

2. Insert the word into your list
3. Advance until you see an alphanumeric or ‘\0’
4. If ‘\0’, go back up and read the next line
5. If alphanumeric, go to 1
6. If not, you will get to a ‘\0’; when you do, read the next line and go to 1
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Rough Outline in Pseudocode

while (get there’s another line)
 p points to beginning
 while(p does not point to ‘\0’)
  while (p is not an alphanumeric and not 
’\0’) skip character, advance p
  if (p points to ‘\0’)
   break
  while (p is an alphanumeric)
   copy *p into temp array, advance p
  put ‘\0’ at end of temparray
  insert word in temparray into the list
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In Pictures

• Input line “  def  ght “ (not including quotes)
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d e f g h t \0\tbuf

p

temparray



In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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d e f g h t \0\tbuf

p

temparray d e f \0

insert temparray (“def”)



In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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d e f g h t \0\tbuf
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insert temparray (“ght”)



In Pictures

• Input line “  def  ght “ (not including quotes)
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In Pictures

• Input line “  def  ght “ (not including quotes)
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d e f g h t \0\tbuf

p

temparray g htemparray t \0

go to next line



Linked List

• A list composed of instantiations of structures
• One element is whatever is to be sorted (int, for us)
• Another element is a pointer to the next element; NULL if none
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Structure for This List

struct node {
 int num;

 struct node *next;

};
struct node *list;
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This holds the integer 
that you read in

This holds the pointer
to the next element
in the linked list; it’s
NULL if it’s at the end

This points to the first 
element of the list



Changing How Memory Is Allocated

• Now you can allocate memory one element (“node”) at a time
• Insertion at beginning is like this (see ”linked.c”, ll. 72–76):
• new->next = first;
• list = new;

• Insertion in the middle between prev and succ is (see “linked.c”, ll. 
78–97):
• new->next = succ;
• prev->next = new;

• Insertion at the end nomore of the list (same as above):
• nomore->next = new;
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Insertion
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headList

1

235 12 49



Insertion: At the Beginning of the List
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headList

1

235 12 49

First, change the pointer in the new node to point to 
the head of the list (where headList points; just copy 
the pointer)



Insertion: At the Beginning of the List
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headList

1

235 12 49

Next, change the pointer to the head of the list to 
point to the new node



Code for This

• new is a pointer to the new node, headList points to the head of the 
list
• First, make new point to the old head. of the list
new->next = headList;

• Next, make the pointer to the head of the list point to new
headList = new;
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Insertion: In the Middle of the List
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headList

15

235 12 49

First, scan down the list until you reach the node 
before which the new node goes. 

new node goes after this one



Insertion: In the Middle of the List
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headList

15

235 12 49

Change the pointer in the new node to point to the 
first node after where the new node is to go

new node goes after this one



Insertion: In the Middle of the List
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headList

15

235 12 49

Next, have the pointer in the node before where the 
new node is to go point to the new node

new node goes after this one



Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is 
a pointer to node
• First, find the node that new goes after
for(p = headList;
 p != NULL && p->next < new->next;
  p = p->next)
 /* do nothing ;
• Next, change the pointer in new to point to the node after where this one goes
new->next = p->next;
• Finally, make the node p points to point to new
p->next = new;

May 31, 2023 ECS 36A, Spring Quarter 2023 30



Insertion: At the End of the List
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headList

68

235 12 49

First, scan down the list until you reach the end node

new node goes after this one



Insertion: At the End of the List
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headList

68

235 12 49

Next, change the pointer in the end node to point to 
the new node

new node goes after this one



Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is 
a pointer to node
• First, find the node at the end
for(p = headList;
 p != NULL && p->next != NULL;
  p = p->next)
 /* do nothing */;
• Next, change the pointer in what p points to to point to new
p->next = new;
• This may be an excess, but make sure new’s pointer field is NULL
new->next = NULL;
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Sorting

• Function is:
void qsort(void *base, size_t nmemb, size_t size,

  int (*compar)(const void *, const void *));

• Here compar is  function that takes 2 pointers to elements of the 
array base, with nmemb members of size size
• compar returns negative if first is less than second; 0 if the two are 

equal; and positive if  the first is greater than the second
• You supply compar
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Example compar

int cmp(const void *x, const void *y)
{
 int *px, *py;
 px = (int *) x;
 py = (int *) y;

 return(*px - *py);
}
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Calling qsort

int arr[100]; /* rray of integers to be sorted */
int narr; /* number of integers in arr */
/*  . . .  put random numbers into arr */
/* now sort them */
qsort(arr, narr, sizeof(int), (int (*)(const void *, const void *) ) cmp);
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