
ECS 36A, May 31, 2023

May 31, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. Homework 4 is out, as is the Gradescope.
2. Friday’s lecture will be recorded and posted to Canvas
• It will also be posted to AggieVideo

3. I will be out of town on Thursday and Friday, so office hours on
Friday are cancelled.

4. Would extending the due date for homework 3 be helpful?

May 31, 2023 ECS 36A, Spring Quarter 2023 2

Breaking a Line into Alphanumeric Words

• You can use strtok()
• You have to exclude everything except alphanumerics
• So the end of token characters has to be everything but alphanumerics!

• You can use fscanf() and a pattern
• If you do this, the pattern should be only alphanumerics
• You also have to go between alphanumeric patterns as fscanf() will not

• There’s a better way!

May 31, 2023 ECS 36A, Spring Quarter 2023 3

Breaking a Line into Alphanumeric Words

• Read one line at a time; for each line . . .
• If the first character is an alphanumeric:

1. Advance until you do not see an alphanumeric, copying each character into
an array; add a ‘\0’ after it

2. Insert the word into your list
3. Advance until you see an alphanumeric or ‘\0’
4. If ‘\0’, go back up and read the next line
5. If alphanumeric, go to 1
6. If not, you will get to a ‘\0’; when you do, read the next line and go to 1

May 31, 2023 ECS 36A, Spring Quarter 2023 4

Rough Outline in Pseudocode

while (get there’s another line)
 p points to beginning
 while(p does not point to ‘\0’)
 while (p is not an alphanumeric and not
’\0’) skip character, advance p
 if (p points to ‘\0’)
 break
 while (p is an alphanumeric)
 copy *p into temp array, advance p
 put ‘\0’ at end of temparray
 insert word in temparray into the list

May 31, 2023 ECS 36A, Spring Quarter 2023 5

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 6

d e f g h t \0\tbuf

p

temparray

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 7

d e f g h t \0\tbuf

p

temparray

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 8

d e f g h t \0\tbuf

p

temparraytemparray d

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 9

d e f g h t \0\tbuf

p

temparray d e

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 10

d e f g h t \0\tbuf

p

temparray d e f

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 11

d e f g h t \0\tbuf

p

temparray d e f \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 12

d e f g h t \0\tbuf

p

temparray d e f \0

insert temparray (“def”)

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 13

d e f g h t \0\tbuf

p

temparray g etemparray e f \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 14

d e f g h t \0\tbuf

p

temparray g htemparray f \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 15

d e f g h t \0\tbuf

p

temparray g htemparray t \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 16

d e f g h t \0\tbuf

p

temparray g htemparray t \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 17

d e f g h t \0\tbuf

p

temparray g htemparray t \0

insert temparray (“ght”)

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 18

d e f g h t \0\tbuf

p

temparray g htemparray t \0

In Pictures

• Input line “ def ght “ (not including quotes)

May 31, 2023 ECS 36A, Spring Quarter 2023 19

d e f g h t \0\tbuf

p

temparray g htemparray t \0

go to next line

Linked List

• A list composed of instantiations of structures
• One element is whatever is to be sorted (int, for us)
• Another element is a pointer to the next element; NULL if none

May 31, 2023 ECS 36A, Spring Quarter 2023 20

13 82 16 5 –1 99 00

Structure for This List

struct node {
 int num;

 struct node *next;

};
struct node *list;

May 31, 2023 ECS 36A, Spring Quarter 2023 21

This holds the integer
that you read in

This holds the pointer
to the next element
in the linked list; it’s
NULL if it’s at the end

This points to the first
element of the list

Changing How Memory Is Allocated

• Now you can allocate memory one element (“node”) at a time
• Insertion at beginning is like this (see ”linked.c”, ll. 72–76):
• new->next = first;
• list = new;

• Insertion in the middle between prev and succ is (see “linked.c”, ll.
78–97):
• new->next = succ;
• prev->next = new;

• Insertion at the end nomore of the list (same as above):
• nomore->next = new;

May 31, 2023 ECS 36A, Spring Quarter 2023 22

Insertion

May 31, 2023 ECS 36A, Spring Quarter 2023 23

headList

1

235 12 49

Insertion: At the Beginning of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 24

headList

1

235 12 49

First, change the pointer in the new node to point to
the head of the list (where headList points; just copy
the pointer)

Insertion: At the Beginning of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 25

headList

1

235 12 49

Next, change the pointer to the head of the list to
point to the new node

Code for This

• new is a pointer to the new node, headList points to the head of the
list
• First, make new point to the old head. of the list
new->next = headList;

• Next, make the pointer to the head of the list point to new
headList = new;

May 31, 2023 ECS 36A, Spring Quarter 2023 26

Insertion: In the Middle of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 27

headList

15

235 12 49

First, scan down the list until you reach the node
before which the new node goes.

new node goes after this one

Insertion: In the Middle of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 28

headList

15

235 12 49

Change the pointer in the new node to point to the
first node after where the new node is to go

new node goes after this one

Insertion: In the Middle of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 29

headList

15

235 12 49

Next, have the pointer in the node before where the
new node is to go point to the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node that new goes after
for(p = headList;
 p != NULL && p->next < new->next;
 p = p->next)
 /* do nothing ;
• Next, change the pointer in new to point to the node after where this one goes
new->next = p->next;
• Finally, make the node p points to point to new
p->next = new;

May 31, 2023 ECS 36A, Spring Quarter 2023 30

Insertion: At the End of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 31

headList

68

235 12 49

First, scan down the list until you reach the end node

new node goes after this one

Insertion: At the End of the List

May 31, 2023 ECS 36A, Spring Quarter 2023 32

headList

68

235 12 49

Next, change the pointer in the end node to point to
the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node at the end
for(p = headList;
 p != NULL && p->next != NULL;
 p = p->next)
 /* do nothing */;
• Next, change the pointer in what p points to to point to new
p->next = new;
• This may be an excess, but make sure new’s pointer field is NULL
new->next = NULL;

May 31, 2023 ECS 36A, Spring Quarter 2023 33

Sorting

• Function is:
void qsort(void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

• Here compar is function that takes 2 pointers to elements of the
array base, with nmemb members of size size
• compar returns negative if first is less than second; 0 if the two are

equal; and positive if the first is greater than the second
• You supply compar

May 31, 2023 ECS 36A, Spring Quarter 2023 34

Example compar

int cmp(const void *x, const void *y)
{
 int *px, *py;
 px = (int *) x;
 py = (int *) y;

 return(*px - *py);
}

May 31, 2023 ECS 36A, Spring Quarter 2023 35

Calling qsort

int arr[100]; /* rray of integers to be sorted */
int narr; /* number of integers in arr */
/* . . . put random numbers into arr */
/* now sort them */
qsort(arr, narr, sizeof(int), (int (*)(const void *, const void *)) cmp);

May 31, 2023 ECS 36A, Spring Quarter 2023 36

