
ECS 36A, June 5, 2023

June 5, 2023 ECS 36A, Spring Quarter 2023 1

Announcements

1. Final study guide, sample final exam, and recursion questions are
posted

2. Answers to sample final are on Canvas but not on the nob web site
3. Extra office hours: Tu 11:00am-11:50am, Th 1:10pm–2:00pm
4. Wednesday office hour shifted to 4:10pm–5:00pm

June 5, 2023 ECS 36A, Spring Quarter 2023 2

Oops . . .

Remember qsort? Here is its call:
qsort(base, nelts, sizeof(double),

 (int (*)(const void *, const void *)) cmp);

I used this for cmp:
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 return(*px – *py);

}

What is wrong with this?

June 5, 2023 ECS 36A, Spring Quarter 2023 3

Oops . . .

It’s the *px – *py — if it returns something less than 1.0, the function
returns 0 (equal), even if there is a difference of (say) 0.5 or –0.5
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 if (*px > *py) return(1);

 else if (*px < *py) return(-1);

 return(0);

}

The lines in red replace the return in the earlier version

June 5, 2023 ECS 36A, Spring Quarter 2023 4

Last C Operator

• Abbreviated “if”
x = a ? b : c

• If a evaluates to non-zero, b is evaluated and assigned to x
• c is ignored

• If a evaluates to zero, c is evaluated and assigned to x
• b is ignored

June 5, 2023 ECS 36A, Spring Quarter 2023 5

Examples

a = 0;
b = 1;

c = 2;

x = a ? b++ : c--;

As a = 0, c-- is evaluated, so x =
2 and c = 1

a = 3;
b = 1;

c = 2;

x = a ? b++ : c--;

As a ≠ 0, b++ is evaluated, so x =
1 and b = 2

June 5, 2023 ECS 36A, Spring Quarter 2023 6

C Preprocessor

• A program that is run as part of the C compiler, before anything is
actually compiled
• It does textual substitution only
• It doesn’t know C (or any other language for that matter)

June 5, 2023 ECS 36A, Spring Quarter 2023 7

C Preprocessor

• All lines begin with #
• #define
• #undef
• #include
• #if, #ifdef, #ifndef
• #elif
• #else

June 5, 2023 ECS 36A, Spring Quarter 2023 8

Example

• Suppose you will use the value of π repeatedly. Define PI :
#define PI 3.14159265

• Now this line
diameter = radius * PI;

• becomes this line
diameter = radius * 3.14159265;

June 5, 2023 ECS 36A, Spring Quarter 2023 9

Example

• Now suppose you will use 0 in two ways: as an end of string and as a
NULL pointer

#define EOS 0

#define NULL ((void *) 0)

• Now these lines
*x = EOS; p = NULL;

• becomes these lines
*x = 0; p = ((void *) 0);

June 5, 2023 ECS 36A, Spring Quarter 2023 10

#define

#define BOARD 8*8
• Replace every occurrence of the word “BOARD” with “8*8”

• Usually used to parameterize something; examples from stdio.h:
• NULL is a macro (0)
• EOF is a macro (–1)

• Warning: this is textual substitution, so do not treat them as
variables!

June 5, 2023 ECS 36A, Spring Quarter 2023 11

Watch Out For This

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE 8+2

• Now every occurrence of SIDE is replaced by 8+2
char chess[SIDE*SIDE];
 becomes
char chess[8+2*8+2];

 So the board has 26 squares

June 5, 2023 ECS 36A, Spring Quarter 2023 12

Do This

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE (8+2)

Now every occurrence of SIDE is replaced by (8+2)
char chess[SIDE*SIDE];
 becomes
char chess[(8+2)*(8+2)];

 So the board has 100 squares

June 5, 2023 ECS 36A, Spring Quarter 2023 13

General Rule

• In the definition part of the macro, parenthesize the macro
• Without parentheses
#define SIDE 8+2

• SIZE * SIZE = 8 + 2 * 8 + 2 = 8 + 16 + 8 = 32
• With parentheses
#define SIDE (8+2)

• SIZE * SIZE = (8 + 2) * (8 + 2) = 10 * 10 = 100

June 5, 2023 ECS 36A, Spring Quarter 2023 14

Parameterized Macro

#define isbetween0and9(x) ((0<=(x))&&((x)<=9))
• isbetween0and9(4) returns 1 and isbetween0and9(–100)

returns 0
• Beware — whatever is put for x is evaluated every time x occurs in the

macro definition
x = 9; . . . isbetween0and9(x++)
becomes
x = 9; . . . ((0<=(x++))&&((x++)<=9))
or
x = 9; . . . ((0<=(9))&&((10)<=9))
which returns false (as 10 > 9)

June 5, 2023 ECS 36A, Spring Quarter 2023 15

#undef

• Delete a macro definition
#define XYZZY “dizzy”

. . .

#undef XYZZY
int XYZZY = –20;

• Without the #undef, the declaration becomes:
int “dizzy” = –20;

 which gives an error

June 5, 2023 ECS 36A, Spring Quarter 2023 16

#include

• Interpolate file into current source code
• When it does this, it preserves the line numbers of the original files by

using these:
 # 9 “macros.c”

 Next line is treated as line 9 by the compiler and debuggers
• The preprocessor inserts these lines; you do not

June 5, 2023 ECS 36A, Spring Quarter 2023 17

#include <file>

#include <file>
• Look for file in predetermined, system locations
• Usually /usr/include, /usr/lib/include, and others
• The “<“ “>” are what tells the C preprocessor to do this

#include “file”
• Look for file in the current working directory first
• The quotation marks are what tells the C preprocessor to do this

–I dir
• Add dir to the list of directories to be searched
• Look in system directories first, then named directories

June 5, 2023 ECS 36A, Spring Quarter 2023 18

#if...#elif...#else...#endif

• Conditional compilation
#if XYZZY == 1

x = 1;

#elif XYZZY == 2
x = 2;

#else

x = 0;

#endif

June 5, 2023 ECS 36A, Spring Quarter 2023 19

#if...#elif...#else...#endif

• If XYZZY is a macro
• defined as 1, x will be 1
• defined as 2, x will be 2
• defined as anything else, or undefined, x will be 1

#if XYZZY == 1
x = 1;
#elif XYZZY == 2
x = 2;
#else
x = 0;
#endif

June 5, 2023 ECS 36A, Spring Quarter 2023 20

#ifdef, #ifndef

#ifdef XYZZY

. . . compiled if XYZZY is defined (as anything)
#endif

#ifndef ABCDE

. . . compiled unless ABCDE is defined (as anything)
#endif

June 5, 2023 ECS 36A, Spring Quarter 2023 21

Some Idioms

#ifdef notdef
. . .
#endif
• This comments out all code between the ifdef and endif
• Quick way to remove code temporarily

#if 0
. . .
#endif
• This does the same thing

June 5, 2023 ECS 36A, Spring Quarter 2023 22

For Debugging

Define a debug macro like:
#define DEBUG

Then use ifdefs to surround debugging code
To eliminate it, just comment out the define line

June 5, 2023 ECS 36A, Spring Quarter 2023 23

Alternate Approach

Omit this line
#define DEBUG

and use the compiler command-line option –DDEBUG
This defines the macro DEBUG (set to 1)

June 5, 2023 ECS 36A, Spring Quarter 2023 24

#error

• Used to print error messages; usually to indicate that compilation will
fail for some reason related to the compiler or system
• Example:
#ifndef unix

#error “This will only run on a UNIX system”
#endif

June 5, 2023 ECS 36A, Spring Quarter 2023 25

