
ECS 36A,
April 16 and 18, 2024

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 1

Pointers

• A variable containing the address of another variable
• Example:
 int x = 0;

 int *px;

 px = &x;

 printf(“x = %d, px = %p, *px = %d\n”, x, (void *)px, *px);

• Operators:
• &variable: address of variable
• *variable: what is in the memory location with the address stored in variable

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 2

In Pictures

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 3

v 0x7fff34293234

0x7fff34293pv

print(“v = %d\n”, v);
• prints “234” (without the “s, ending in newline)
print(“pv = %p\n”, (void *)pv);
• prints “0x7fff34826” (without the “s, ending in

newline)
print(“*pv = %d\n”, *py);
• prints “234” (without the “s, ending in newline)

0x7fff34826

C Arrays

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 4

0 21 3 4 5 6 7 8

xyzzy[0]

xyzzy[1]

xyzzy[2]

xyzzy[3]

xyzzy[4]

xyzzy[5] xyzzy[7]

xyzzy[6] xyzzy[8]

Arrays as Pointers and Vice Versa

• Arrays are simply another way to express pointers
• So xarray[0] and *xarray refer to the same memory location
• And xarray[12] and *(xarray+12) refer to the same memory location

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 5

Pointer Arithmetic

• type *x;
• x + 10 refers to the 10th type object; so if type is an int, x + 10 refers to the 10th

integer memory location beyond that which x points to
• This is why pointers and array names are equivalent

• x + n: refers to the nth type object beyond x
• x – n: refers to the nth type object before x
• x – y: refers to the number of type objects between x and y
• x + y: meaningless!!!

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 6

Multidimensional Arrays

• A 2-dimensional array look like this:

• Stored in row-major order as consecutive elements of a row are
stored next to each other
• Column-major order has consecutive elements of a column stored next to

each other

• x[i] refers to row i

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 7

x[0] x[0][0] x[0][1] x[0][2] x[0][3]

x[1] x[1][0] x[1][1] x[1][2] x[1][3]

x[2] x[2][0] x[2][1] x[2][2] x[2][3]

Initializations

• Initializing an array
int iarr[5] = { 1, 2, 3, 4, 5 };

 or
int iarr[] = { 1, 2, 3, 4, 5 };

• Initializing a pointer
 int ivar;

 int *iptr = &ivar;

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 8

Strings

• An array of characters terminated with a 0 byte
• 0 byte is a byte with all bits set to 0; also called a NUL byte
• You can use either an array or a pointer

• Examples:
 char carr[6] = { 'h', 'e’, 'l', 'l', 'o', '\0' };

 char carr[] = { 'h', 'e’, 'l', 'l', 'o', '\0' };

 char *cstr = "hello";
• For the last, when a string (in "…") ends, the compiler adds a NUL byte

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 9

A Warning

• You want to make a copy of a string
char *cstr = "hello";

• Do not do this:
char *cdupstr;

. . .

cdupstr = cstr;

• This simply copies the pointer, so cdupstr and cstr point to the
same string; if cdupstr is declared as an array, you get an error

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 10

Doing It Right

• You want to make a copy of a string
 char *cstr = "hello";
 char cdupstr[100];

• Be sure cdupstr is an array with enough room to hold "hello" plus the trailing NUL
byte!

• This works:
(void) strcpy(cdupstr, cstr);

• But this is better!
 (void) strncpy(cdupstr, cstr, 99);
 cdupstr[99] = '\0';

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 11

Reading a Line of Input

• Use fgets(buf, n, stdin)
• On success, returns address of buf
• On failure or EOF, if nothing has been read, returns a NULL pointer; otherwise,

it returns all the characters read up to that error or the end of file

• Example use:
if (fgets(buf, 100, stdin) == NULL){
 fprintf(stderr, "Bad input\n"); . . .

• If there is a new line, it reads up to that and then appends the ‘\0’ byte

• Another way (but do not do this!)
if (gets(buf) == NULL){ fprintf(stderr, "Bad input\n"); . . . }

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 12

Command-Line Arguments

• Command is loopy 5 9
• Declaration of main function:

int main(int argc, char *argv[])

• Sometimes written as:
int main(int argc, char **argv)

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 13

number of arguments
(command is argument 0

So argc is always at least 1)

list of arguments
(in array of char pointers)

Visually:

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 14

argv argv[0]

argv[1]

argv[2]

argv[3]

l o o p y \0

\0

\0

5

9

Passing Strings as Arguments

• Function prototype:
void strfunc(char *, char *)

• Actual call (x, y are strings):
strfunc(x, y)

• Function definition header:
void strfunc(char *first, char *second){

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 15

String Idioms

• These mean the same thing when used as function arguments:
char *x

char x[]

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 16

Common Ways to “Walk Down” Strings

char *c = "hello";
char *cp = c;

while(*cp != '\0')
 printf("%c", *cp++);

printf("\n");

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 17

Another Idiom: Copy a String

char *c = "hello";
char cd[100];

char *cp = c;

char *cpd = cd;

while(*cpd++ = *cp++)

 ;

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 18

But . . .

• It’s better to use strcpy or strncpy
• Because these may be faster, using assembly language optimizations
• Also they are easier to understand!

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 19

Types of Characters

#include <ctype.h>
isprint(ch) check for printing characters
isspace(ch) check for space (for example, space, newline, tab)
isalpha(ch) check for (capital or small) letter
isdigit(ch) check for a digit ('0' … '9')
isalnum(ch) same as isalpha(ch) || isdigit(ch)
• Note: ch is a character (technically, EOF or unsigned short int)
• Returns 0 if above check fails, non-zero if not

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 20

Converting Chars to Numbers

• Convert printing digit ch to integer
ch – '0'

• Convert integer (between 0 and 9 inclusive) to printing char
ch + '0'

• Find out which number a letter of the alphabet is
ch – 'a' (for lower case), ch – 'A' (for upper case)

• Find out which letter of the alphabet a number between 0 and 25
inclusive) is

ch + 'a' (for lower case), ch + 'A' (for upper case)

April 16 and 18, 2024 ECS 36A, Spring Quarter 2024 21

