
ECS 36A, April 23, 2024

April 23, 2024 ECS 36A, Spring Quarter 2024 1

Announcements

• Midterm has been moved to Tuesday, May 7
• It was scheduled for Thursday, May 2

• Midterm study guide, sample midterm are on Canvas
• Sample midterm is shorter than the real one will be
• I will post answers to it on Monday, April 29

• Tutoring is available from the CS Tutoring Club

April 23, 2024 ECS 36A, Spring Quarter 2024 2

++, --

• How they work depends on if they come before or. after the value
• If before, use the value of the variable and then increment or

decrement the variable
• If after, increment or decrement the value of the variable and then

use the value
• Examples (assume a =7 initially)
• x = ++a; x is 8, a is 8 • x = --a; x is 6, a is 6
• x = a++; x is 7, a is 8 • x = a--; x is 7, a is 6

April 23, 2024 ECS 36A, Spring Quarter 2024 3

Evaluation of Arguments to Functions

• The order is not defined; it is usually left to right or right to left
• But it could be much weirder . . .

• Example: suppose x is 5
printf(“%d %d\n”, ++x, ++x)

 could print 6 7 or 7 6

April 23, 2024 ECS 36A, Spring Quarter 2024 4

Formatted Read

These read input or a string, and attempt to match the input with the
format. If any match the desired input. the appropriate variable is set.
It stops when it reads the first character that does not match the
format.
• scanf (format, variables)
• Same as fscanf(stdin, format, variables)

• sscanf(string, format, variables)
• Reads from the given string

April 23, 2024 ECS 36A, Spring Quarter 2024 5

The Formats

A string with the following format indicators:
• One or more whitespace characters: matches 0 or more whitespaces

in the input
• Ordinary character (except whitespace or %): matches the next

character
• Conversion specification: begins with % (to match a % in the input,

say %%)

April 23, 2024 ECS 36A, Spring Quarter 2024 6

Conversion Specifiers

• Integer specification
• ”%d”: next comes a decimal integer
• “%o”: next comes an octal integer
• “%x”: next comes a hexadecimal integer
• ”%f”, “%e”, “%g”: next comes a floating point number
• “%c”: next comes a single character
• “%s”: next comes a string (a sequence of characters without whitespace)

• Examples:
• “(%d,%d)” matches “(5,6)” but not “(5 6)”
• “%s %s” matches “hello<tab>there” but not “hellothere”

April 23, 2024 ECS 36A, Spring Quarter 2024 7

Variables

• These are listed in the order of the conversion specifiers
• All must be pointers (addresses)
Examples:
int x; char y[1000];
scanf(“%d xyzzy %s”, &x, y)

April 23, 2024 ECS 36A, Spring Quarter 2024 8

In Program, Reading Integer

/* read an integer, looping until you do */

while(scanf("%d", &n) != 1){

 /* you didn't; report an error */

 fprintf(stderr, "Enter a positive integer\n");

}

printf("I read %d\n", n);

• Here's what happens when I type an integer:
% a.out

8

I read 8

April 23, 2024 ECS 36A, Spring Quarter 2024 9

Problem With This

• Works well if you type an integer
• But what happens if you don't?
• Here's the output when I typed "hello":
% a.out

hello

Enter a positive integer

Enter a positive integer

Enter a positive integer

. . .

April 23, 2024 ECS 36A, Spring Quarter 2024 10

What Happened?

• scanf tries to read an integer
• It encounters a non-integer and so does not read it
• The non-integer ('h' in this case) is pushed back into the input stream
• So the next time something is read, it will be the 'h'

• scanf returns 0
• while condition true, so it enters the loop and prints the error

message
• It goes back to the while statement
• Repeat
• And re-read the 'h' …

April 23, 2024 ECS 36A, Spring Quarter 2024 11

How to Fix It . . . Almost

• Problem: you need to throw away the rest of the line
• Fix: replace while loop:
/* read an integer, looping until you do */

while(scanf("%d", &n) != 1){

 /* you didn't; report an error */

 fprintf(stderr, "Enter a positive integer\n");

 while((n = getchar()) != EOF && n != '\n')

 ;

}

printf("I read %d\n", n);

April 23, 2024 ECS 36A, Spring Quarter 2024 12

note addition

Let's Test It

• 3 conditions: there is integer input, there is non-integer input, and
there isn't any input
• We know integer input works

• Non-integer input:
% a.out

hello

Enter a positive integer

8

I read 8

• It worked!

April 23, 2024 ECS 36A, Spring Quarter 2024 13

Let's Test It

• No input; type EOF to indicate the immediate end of input
• On Linux and Macs, it's control-D; on Windows, it is usually one of control-D,

control-C, or control-Z (consult your manual)
% a.out

^D

Enter a positive integer

Enter a positive integer

Enter a positive integer

• It didn't work L

April 23, 2024 ECS 36A, Spring Quarter 2024 14

What Happened

• On EOF, scanf returns EOF (–1)
• It enters the while loop and prints the error message
• It tries to read the rest of the line but gets EOF, so it falls out of the

inner loop and goes back to the outer while statement
• Repeat
/* read an integer, looping until you do */
while(scanf("%d", &n) != 1){
 /* you didn't; report an error */
 fprintf(stderr, "Enter a positive integer\n");
 while((n = getchar()) != EOF && n != '\n')
 ;
}

April 23, 2024 ECS 36A, Spring Quarter 2024 15

The Real Fix

/* read an integer, looping until you do */

while((r = scanf("%d", &n)) != 1 && r != EOF){

 /* you didn't; report an error */

 fprintf(stderr, "Enter a positive integer\n");

 while((n = getchar()) != EOF && n != '\n')

 ;

}

if (r != EOF)

 printf("I read %d\n", n);

April 23, 2024 ECS 36A, Spring Quarter 2024 16

note addition 1

note change 2

Another Approach

• Read the line into a buffer, then apply scanf to the contents of the
buffer
• New functions:
• sscanf(char *buf, char *format, pointers)
• Just like scanf, but reads from buf and not the input

• fgets(char *buf, int maxch, stdin)
• Read up to maxch–1 characters, or up to the next newline, and store them

(including the newline) in buf; then return buf
• On EOF, return NULL

April 23, 2024 ECS 36A, Spring Quarter 2024 17

In Program, Reading Integer
/* read a line, looping until you get an integer */
while (fgets(buf, 10, stdin) != NULL){
 /* see if there is an integer there */
 if (sscanf(buf, "%d", &n) != 1){
 /* nope; report an error */
 fprintf(stderr, "Enter a positive integer\n");
 }
 else{
 /* yep; print it and leave */
 printf("I read %d\n", n);
 break;
 }
}

April 23, 2024 ECS 36A, Spring Quarter 2024 18

Formatted Write

These write to a file or the standard output as indicated by the format
string.
• printf (format, variables)
• Same as fprintf(stdout, format, variables)

• sprintf(string, format, variables)
• Writes its output into string

• fprintf(fp, format, variables)
• Writes to the file with file pointer fp
• You saw this with the file pointer stderr for the standard error output

April 23, 2024 ECS 36A, Spring Quarter 2024 19

The Formats

A string with the following format indicators:
• Anything except the conversion specifiers is copied
• Conversion specification: begins with %; “%%” outputs a single “%”
• ”%d”: print next argument as a decimal integer
• “%o”: print next argument as an octal integer
• “%x”: print next argument as a hexadecimal integer
• “%c”: print next argument as a single character
• “%s”: print next argument as a string (sequence of characters)
• “%f”: print next argument as a floating point number, like 12.345678
• “%e”: print next argument as a floating point number, line 1.2345678e1
• "%p": print next argument as a pointer value, like 0x7fff2435

April 23, 2024 ECS 36A, Spring Quarter 2024 20

Format Modifiers

• %#x, %#o: put “0x” in front of hexadecimal output, 0 in front of octal
output
• %+d: always print a sign, either “+” or “-”
• %nd: print integer in a field of n characters
• %0nd: as above, but pad with leading 0s
• %-nd: left align the number in the field
If the number is bigger than the field, the field size is ignored

April 23, 2024 ECS 36A, Spring Quarter 2024 21

More Format Modifiers

For floating-point numbers:
• %n.mf: print float in a field of size n, with m decimal digits
• If m is 0, then no decimal point or decimal fraction is printed
• Printed value is in normal floating point form, like 123.4567

• %n.me: print float in a field of size n, with m decimal digits
• If m is 0, then no decimal point or decimal fraction is printed
• Printed value is in scientific notation, like 1.234567e2

April 23, 2024 ECS 36A, Spring Quarter 2024 22

Still More Format Modifiers

For characters:
• %12.4c: this ignores the .4 and prints the character in a field of 12

wide
• %012c: as above, but ignores the 0
For strings:
• %12.4s: prints first 4 characters of string in a field 12 wide
• %-12.4s: left justifies the above
• %012s: this ignores the 0

April 23, 2024 ECS 36A, Spring Quarter 2024 23

Variables

• These are listed in the order of the conversion specifiers
• They need not be pointers
Examples:
int x; char y[1000];
printf(“%d xyzzy %s”, x, y)

April 23, 2024 ECS 36A, Spring Quarter 2024 24

C Compiler Structure

April 23, 2024 ECS 36A, Spring Quarter 2024 25

main.c C Preprocessor (cpp)

C Compiler Structure

April 23, 2024 ECS 36A, Spring Quarter 2024 26

C Compiler (cc1)main.c
main.i

C Preprocessor (cpp)

C Compiler Structure

April 23, 2024 ECS 36A, Spring Quarter 2024 27

C Compiler (cc1)main.c
main.i

main.s

C Preprocessor (cpp)

Assembler (as)

C Compiler Structure

April 23, 2024 ECS 36A, Spring Quarter 2024 28

C Compiler (cc1)

Linker (ld)

main.c

main.o

main.i

main.s

C Preprocessor (cpp)

Assembler (as)

libraries

C Compiler Structure

April 23, 2024 ECS 36A, Spring Quarter 2024 29

C Compiler (cc1)

Linker (ld)

main.c

main.o

main.i

main.s

C Preprocessor (cpp)

Assembler (as)a.out

libraries

C Preprocessor

All lines begin with #
• #define
• #undef
• #include
Defines built-in constants too; these normally begin with 2 "_"s or one
"_" and a capital letter
• __LINE__
• __FILE__

April 23, 2024 ECS 36A, Spring Quarter 2024 30

#define

#define BOARD 8*8
• Replace every occurrence of the word “BOARD” with “8*8”

• Usually used to parameterize something; examples from stdio.h:
• NULL is a macro (0)
• EOF is a macro (–1)

• Warning: this is textual substitution, so do not treat them as
variables!

April 23, 2024 ECS 36A, Spring Quarter 2024 31

Watch Out For This Sort of Macro

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE 8+2

• Now every occurrence of SIDE is replaced by 8+2
char chess[SIDE*SIDE];
 becomes
char chess[8+2*8+2];

 So the board has 26 squares

April 23, 2024 ECS 36A, Spring Quarter 2024 32

Do This

• Goal: create a chessboard, each side being 8 squares, and 2 extra
squares for computation, for a total of 100 squares

#define SIDE (8+2)

• Now every occurrence of SIDE is replaced by (8+2)
char chess[SIDE*SIDE];
 becomes
char chess[(8+2)*(8+2)];

 So the board has 100 squares

April 23, 2024 ECS 36A, Spring Quarter 2024 33

Parameterized Macro

#define isbetween0and9(x) ((0<=(x))&&((x)<=9))
• isbetween0and9(4) returns 1 and isbetween0and9(–100) returns 0
• Beware — whatever is put for x is evaluated every time x occurs in the

macro definition
x = 9; . . . isbetween0and9(x++)
becomes
x = 9; . . . ((0<=(x++))&&((x++)<=9))
or
x = 9; . . . ((0<=(9))&&((10)<=9))
which returns false (as 10 > 9)

April 23, 2024 ECS 36A, Spring Quarter 2024 34

#undef

• Delete a macro definition
#define XYZZY "dizzy"

. . .

#undef XYZZY
int XYZZY = –20;

• Without the #undef, the declaration becomes:
int "dizzy" = –20;

 which gives an error

April 23, 2024 ECS 36A, Spring Quarter 2024 35

#include

• Interpolate file into current source code
• When it does this, it preserves the line numbers of the original files by

using these:
 # 9 "macros.c"

 Next line is treated as line 9 by the compiler and debuggers

April 23, 2024 ECS 36A, Spring Quarter 2024 36

#include

#include <file>
• Look for file in predetermined, system locations
• Usually /usr/include, /usr/lib/include, and others
• The "<" ">" are what tells the C preprocessor to do this

#include "file"
• Look for file in the current working directory first
• The quotation marks are what tells the C preprocessor to do this

–I dir
• Add dir to the list of directories to be searched
• Look in system directories first, then named directories

April 23, 2024 ECS 36A, Spring Quarter 2024 37

Predefined Constants

• __LINE__: current line number of the source file being
preprocessed
• Does not take into account any interpolations from included files

• __FILE__: file name as given to the preprocessor
• Usually the file name you gave to cc, gcc, or lcc

• __STDC__: set if you are using standard C
• Usually set to the latest version of C, so if you use an earlier version it will still

be set
• GNU C, and other versions of C, have non-standard extensions

April 23, 2024 ECS 36A, Spring Quarter 2024 38

System-Specific Predefined Constants

• Constants identifying the operating system; examples
• __linux__, __linux, linux: Linux operating system
• __gnu_linux__: GNU Linux system,
• __unix__, __unix, or unix: Unix operating system
• __MACH__, __APPLE__: MacOS operating system

• Constants identifying the architecture; examples
• __arm64__, __arm64: 64-bit ARM chips
• __amd64__, __amd64: 64-bit AMD chips
• __x86_64__, __x86_64: 64-bit Intel chips

April 23, 2024 ECS 36A, Spring Quarter 2024 39

