
ECS 36A, May 9, 2024

May 9, 2024 ECS 36A, Spring Quarter 2024 1

Strings to Numbers

• int atoi(char *str), long int atol(char * str):
convert str to int or long, respectively
• double atof(char * str): convert str to double
• No error checking
• If any non-digit or non-floating character is found, these stop converting and

return what they have converted

May 9, 2024 ECS 36A, Spring Quarter 2024 2

Main Loop in conv1.c

while(fgets(buf, BUFFERSIZE, stdin) != NULL){
 /* clobber the trailing newline */
 /* to keep the output clean */
 if (buf[strlen(buf)-1] == '\n')
 buf[strlen(buf)-1] = '\0';
 /* convert to integer and print it */
 i = atol(buf);
 printf("\'%s\' is the integer %ld\n", buf, i);
 /* convert to double and print it */
 f = atof(buf);
 printf("\'%s\' is the double %f\n", buf, f);
 printf("> ");

May 9, 2024 ECS 36A, Spring Quarter 2024 3

Examples
% conv1

How atol/atof work:

> 103

'103' is the integer 103

'103' is the double 103.000000

> 111.34

'111.34' is the integer 111

'111.34' is the double 111.340000

> 7a34

'7a34' is the integer 7

'7a34' is the double 7.000000

>

'' is the integer 0

'' is the double 0.000000

>

May 9, 2024 ECS 36A, Spring Quarter 2024 4

Type the command

The first input is "103", which is an integer

The second input is "111.34", which is a floating point number
Note atoi() discards the decimal fraction

The third input is "7a34" – it is not a number
Both atoi() and atof() read to the first non-
number character (here, "a"), and do not give
an error; they ignore the rest of the line
The fourth input is nothing – again, it is not a number

And the output is 0, which is incorrect
End of file (control-D) ends the program

Strings to Numbers

• long int strtol(char *str, char **eostr, int base):
convert str to long it in base base; return a pointer eostr to first char
that is not converted
• If eostr is NULL, the end pointer is not returned
• If *eostr is '\0', there were no errors
• If no digits, the value of str is put into *eostr and returns 0

• float strtof(char *str, char **eostr): convert str to
float
• double strtod(char *str, char **eostr): convert str

to double

May 9, 2024 ECS 36A, Spring Quarter 2024 5

Main Loop in conv2.c
while(fgets(buf, BUFFERSIZE, stdin) != NULL){
 /* clobber the trailing newline to keep the output clean */
 if (buf[strlen(buf)-1] == '\n')
 buf[strlen(buf)-1] = '\0';
 /* convert to integer and print it */

 i = strtol(buf, &eol, 10);
 printf("\'%s\' is the integer %ld; rest of string: \'%s'\n",
 buf, i, eol);
 f = strtod(buf, &eod);
 printf("\'%s\' is the double %f; rest of string: \'%s'\n",
 buf, f, eod);
 printf("> ");
}

May 9, 2024 ECS 36A, Spring Quarter 2024 6

Examples
% conv2

How strtol/strtod work:

> 103

'103' is the integer 103; rest of string: ''

'103' is the double 103.000000; rest of string: ''

> 111.34

'111.34' is the integer 111; rest of string: '.34'

'111.34' is the double 111.340000 ; rest of string: ''

> 7a34

'7a34' is the integer 7; rest of string: 'a34'

'7a34' is the double 7.000000; rest of string 'a34'

>

'' is the integer 0; rest of string: ''

'' is the double 0.000000; rest of string: ''

>

May 9, 2024 ECS 36A, Spring Quarter 2024 7

Type the command

The first input is "103", which is an integer

The second input is "111.34", which is a floating point number

Note strtol() treats the decimal fraction
like extraneous matter after the integer

The third input is "7a34" – it is not a number
Both strtol() and strtod() read to the first non-
number character (here, "a"), and also
returns the rest of the line

The fourth input is nothing – it is not a number

And the output is 0, which is incorrect
End of file (control-D) ends the program

C and Files

• Files represented by a file pointer
• Note: the actual representation in Linux is a file descriptor, which is a non-

negative integer, but that is non-portable; the file pointer is
• 3 predefined file pointers: stdin, stdout, stderr

• File pointer contains information:
• Which file is being referenced (ie, the file descriptor)
• Whether opened for reading, writing, or appending
• Where in the file the next access is to occur
• And lots of other information not relevant here

May 9, 2024 ECS 36A, Spring Quarter 2024 8

Predefined File Pointers

• stdin: reads from the standard input
• Usually a terminal or terminal emulator
• Sometimes from a file, if input is redirected (use “<“ in the shell)
• Sometimes it is the output of another program (use “|”, like “ps | more”)

• stdout: writes to the standard output
• Usually to a terminal or terminal emulator
• Sometimes to a file, if output is redirected (use “>” in the shell)
• Sometimes it is the input to another program (use “|”, like “ps | more”)

• stderr: writes to the error output
• Usually to a terminal or terminal emulator, even if output is redirected
• Sometimes to a file, if output is redirected (use “2>” in the bash shell)

May 9, 2024 ECS 36A, Spring Quarter 2024 9

Accessing a file

• To open a file:
 FILE *fp;

 if ((fp = fopen(filename, mode)) == NULL)

 error handling
• Mode is one of the following:

• "r" read
• "w" write – erases file if it exists, creates it if it doesn’t
• "a" append – adds to end of file if it exists, creates it if it doesn’t

• All references to the contents and the file itself (usually) use the file pointer
• Underlying the file pointer is a file descriptor, more about which later

May 9, 2024 ECS 36A, Spring Quarter 2024 10

When You’re Done With the File

• Closing the file releases all resources associated with the process and
the file
• To close a file:
 result = fclose(fp)

• result is 0 if closed successfully, and EOF (–1) if not
• In either case, do not refer to that file pointer again!
• If you do, the results are undefined

• Usual call:
 (void) fclose(fp)

May 9, 2024 ECS 36A, Spring Quarter 2024 11

Part of Main Loop of printfile1.c

/* open the file */
if ((fp = fopen(fname, "r")) == NULL){
 fprintf(stderr, "Could not open file %s\n", fname);
 rv++; /* indicates an error */
 continue;
}
/* copy the file, putting line */
/* numbers in front of each line */
copyout(fp);
/* now close it */
(void) fclose(fp);

May 9, 2024 ECS 36A, Spring Quarter 2024 12

Reading Text Files

• Read a line:
if (fgets(buf, n, fp) == NULL)
 EOF and error handling

• On success, returns line (or maximum n–1 characters) in buf
• On EOF or error, returns NULL

• Read a character:
if ((ch = fgetc(fp)) == EOF)
 EOF and error handling

• On EOF or error, returns EOF
• On success, returns ch as an unsigned char cast to an int

May 9, 2024 ECS 36A, Spring Quarter 2024 13

Reading Text Files

• Other ways to read characters:
• getc(fp) same as fgetc(fp)
• getchar() same as getc(stdin)

• Unread characters (really, push them back into the input stream):
if (ungetc(ch, fp) == EOF)

 handle error
• Important: only 1 character of pushback is guaranteed
• If more than that are pushed back (bad idea), they will be read in reverse

order of pushback

May 9, 2024 ECS 36A, Spring Quarter 2024 14

Writing Text Files

• Write a line:
if (fputs(buf, fp) == EOF)
 handle error

• On success, returns a non-negative integer (it does not append a newline)
• On error, returns EOF

• Write a character:
if (fputc(ch, fp) == EOF)
 error handling

• On error, returns EOF
• On success, returns ch as an unsigned char cast to an int

May 9, 2024 ECS 36A, Spring Quarter 2024 15

Writing Text Files

• Other ways to write lines:
if (puts(buf) == EOF)

 handle error
• On success, writes buf’s contents followed by a newline and returns a non-

negative integer
• On error, returns EOF

• Other ways to write characters:
• putc(ch, fp) same as fputc(ch, fp)
• putchar(ch) same as putc(ch, stdout)

May 9, 2024 ECS 36A, Spring Quarter 2024 16

First copyout Routine

void copyout(FILE *fp)
{
 char buf[MAXLINELENGTH]; /* buffer to hold line */
 static int lineno = 1; /* current line number */

 /* read until done */
 while(fgets(buf, MAXLINELENGTH, fp) != NULL){
 /* not done yet so print line number */
 printf("%6d\t", lineno++);
 fputs(buf, stdout); /* and the line */
 }
}

May 9, 2024 ECS 36A, Spring Quarter 2024 17

First copyout Routine Notes

• fgets() reads a line of up to 1023 (MAXLINELENGTH–1) characters
from the input
• It then prints a line number using printf()
• Note there is no '\n' there so the next output is on the same line

• And it then uses fputs() to print the line
• Note fgets() preserved the newline ending in buf, so fputs) prints the newline

in buf also
• Bonus question: when does this print two output lines for a single

input line?
• Suppose this is line 100 in the file; when might that same line be printed with

line numbers 100 and 101?

May 9, 2024 ECS 36A, Spring Quarter 2024 18

Example Run of printfile1

% cat XYZZY
Hello. This is an example
file to demonstrate how
the printfile programs work.
% printfile1
file name> XYZZY

 1 Hello. This is an example
 2 file to demonstrate how
 3 the printfile programs work.

file name>

May 9, 2024 ECS 36A, Spring Quarter 2024 19

Second copyout Routine
void copyout(FILE *fp)

{

 char buf[MAXLINELENGTH]; /* buffer to hold line */

 int i; /* counter in a for loop */

 static int lineno = 1; /* current line number */

 /* read until done

 while(fgets(buf, MAXLINELENGTH, fp) != NULL){

 /* not done yet so print line number */

 printf("%6d\t", lineno++);

 /* use a for loop to demonstrate sequential access */

 for(i = 0; buf[i] != '\0'; i++)

 putchar(buf[i]);

 }

}

May 9, 2024 ECS 36A, Spring Quarter 2024 20

Second copyout Routine Notes

• fgets() reads a line of up to 1023 (MAXLINELENGTH–1) characters
from the input
• It then prints a line number using printf()
• Note there is no '\n' there so the next output is on the same line

• It then uses putchar() to write the line, character by character, oon
the standard output
• Bonus question: Will this also print two output lines for a single input

line, under the same conditions as printfile1.c?

May 9, 2024 ECS 36A, Spring Quarter 2024 21

Example Run of printfile2

% cat XYZZY
Hello. This is an example
file to demonstrate how
the printfile programs work.
% printfile1
file name> XYZZY

 1 Hello. This is an example
 2 file to demonstrate how
 3 the printfile programs work.

file name>

May 9, 2024 ECS 36A, Spring Quarter 2024 22

Notice the output is the
same as for printfile1;
only the way the output
is generated is different
(putchar() vs. fputs())

Part of Main Loop of printfile3.c
int main(int argc, char *argv)

{

 /* . . . omitting part of program . . . */

 for(i = 1; i < argc; i++){

 /* open the file */

 if ((fp = fopen(argv[i], "r")) == NULL){

 fprintf(stderr, "Could not open file %s\n", argv[i]);

 continue;

 }

 /* copy the file, putting line numbers in front of each line */

 copyout(fp);

 /* now close it */

 (void) fclose(fp);

 }

May 9, 2024 ECS 36A, Spring Quarter 2024 23

printfile3 Notes

• Here you can name the file to be printed on the command line
• The program does not prompt for a file name
• It goes down the argument list and prints each file named in that list
• If no files named, argc is 1, and it skips the for loop

• Note that the fprintf() says the file could not be opened
• But it does not say why the file could not be opened

• A better way to say what went wrong when the program tried to
open the file follows . . .

May 9, 2024 ECS 36A, Spring Quarter 2024 24

Example Run of printfile3

% cat XYZZY

Hello. This is an example

file to demonstrate how

the printfile programs work.

% printfile3 XYZZY XXX

 1 Hello. This is an example

 2 file to demonstrate how

 3 the printfile programs work.

Could not open file XXX

May 9, 2024 ECS 36A, Spring Quarter 2024 25

Notice the output is the
same as for printfile1 and
printfile2 when the
named file exists. If it
does not exist, you get an
error message.

Error Handling

• Error codes are stored in a global variable int errno
• Include the header file “errno.h”

• How to access the error code:
1. Print corresponding system error message

perror(str)

2. Get a pointer to the corresponding system error message
char *strerror(errno)

May 9, 2024 ECS 36A, Spring Quarter 2024 26

Error Handling

Getting a list of system error messages
• Get the number of system error messages

const int sys_nerr

• Get the list of the system error messages
const char * const sys_errlist[]

• WARNING: This does not work on the CSIF; those variables are
undefined
• Not sure if this is true on non-Ubuntu versions of Linux

May 9, 2024 ECS 36A, Spring Quarter 2024 27

Part of Main Loop of printfile4.c
int main(int argc, char *argv)

{

 /* . . . omitting part of program . . . */

 for(i = 1; i < argc; i++){

 /* open the file */

 if ((fp = fopen(argv[i], "r")) == NULL){

 perror(argv[i]);

 continue;

 }

 /* copy the file, putting line numbers in front of each line */

 copyout(fp);

 /* now close it */

 (void) fclose(fp);

 }

May 9, 2024 ECS 36A, Spring Quarter 2024 28

perror() rather than fprintf()

Example Run of printfile4

% cat XYZZY

Hello. This is an example

file to demonstrate how

the printfile programs work.

% printfile4 XYZZY XXX

 1 Hello. This is an example

 2 file to demonstrate how

 3 the printfile programs work.

XXX: No such file or directory

May 9, 2024 ECS 36A, Spring Quarter 2024 29

Notice the output is the
same as for printfile1 and
printfile2 when the
named file exists. If it
does not exist, you get an
error message that is
more informative than
the previous one

Part of Main Loop of printfile5.c
int main(int argc, char *argv)

{

 /* . . . omitting part of program . . . */

 for(i = 1; i < argc; i++){

 /* open the file */

 if ((fp = fopen(argv[i], "r")) == NULL){

 fprintf(stderr, "Error number %d: %s (file %s)\n", errno,

 strerror(errno), argv[i]);

 continue;

 }

 /* copy the file, putting line numbers in front of each line */

 copyout(fp);

 /* now close it */

 (void) fclose(fp);

 }

May 9, 2024 ECS 36A, Spring Quarter 2024 30

This is the error number

This is the the error string (what perror() prints)

This is the file name

Example Run of printfile5

% cat XYZZY

Hello. This is an example

file to demonstrate how

the printfile programs work.

% printfile5 XYZZY XXX

 1 Hello. This is an example

 2 file to demonstrate how

 3 the printfile programs work.

Error number 2: No such file or directory (file XXX)

May 9, 2024 ECS 36A, Spring Quarter 2024 31

The output is the
same as for the other
printfiles when the
named file exists. If it
does not exist, you get an
even more informative
error message than the
previous ones

syslist.c

• This was run on MacOS 14.1 (which runs a version of UNIX)
#include <stdio.h>
#include <errno.h>

int main(void)
{
 int i; /* counter in a for loop */

 /* loop through the list, printing each message and error number */
 for(i = 0; i < sys_nerr; i++)

 printf("%3d. %s\n", i, sys_errlist[i]);

 return(0);
}

May 9, 2024 ECS 36A, Spring Quarter 2024 32

Formatted Read

These read input or a string, and attempt to match the input with the
format. If any match the desired input. the appropriate variable is set.
It stops when it reads the first character that does not match the
format.
• scanf (format, variables)
• Same as fscanf(stdin, format, variables)

• sscanf(string, format, variables)
• Reads from the given string

• fscanf(fp, format, variables)
• Reads from the file with file pointer fp

May 9, 2024 ECS 36A, Spring Quarter 2024 33

Formatted Write

These write to a file or the standard output as indicated by the format
string.
• printf (format, variables)
• Same as fprintf(stdout, format, variables)

• sprintf(string, format, variables)
• Writes its output into string

• fprintf(fp, format, variables)
• Writes to the file with file pointer fp

May 9, 2024 ECS 36A, Spring Quarter 2024 34

Useful File Functions

int feof(FILE *fp)

• Nonzero if file pointer fp is at EOF; 0 if not
int ferror(FILE * fp)

• Nonzero if error indicator for fp is set; 0 if not
void clearerr(FILE * fp)
• Clear EOF and error indicators for fp

May 9, 2024 ECS 36A, Spring Quarter 2024 35

Reading Binary Files

• Binary files contain non-ASCII values; for example, integers are
written into the file as integers, not printed representations of
integers
size_t fread(void *ptr, size_t sz, size_t num, FILE *fp)
• size_t is type used for sizes of things — it's a long unsigned int
• Reads num items of size sz from file fp and stores them beginning at address

ptr
• ptr can point to any type (it’s declared as void *ptr)
• Returns number of items actually read; on error or EOF, returns the number

of items actually read (or 0 if none were)
• Use feof() and ferror() to determine if it’s an EOF or an error when it returns 0

May 9, 2024 ECS 36A, Spring Quarter 2024 36

Writing Binary Files

• Writes out the data in the form it is stored in in memory.
size_t fwrite(void *ptr, size_t sz, size_t num, FILE *fp)
• Writes num items of size sz beginning from address ptr to file fp
• ptr can point to any type (it’s declared as void *ptr)
• Returns number of items actually written; on error, returns the number of

items actually written (or 0 if none were)

May 9, 2024 ECS 36A, Spring Quarter 2024 37

Part of Main Routine of sbcopy.c
/* be sure there are 2 file names! */

if (argc != 3){

 fprintf(stderr, "Usage: scopy fromfile tofile\n");

 return(1);

}

/* open the input and output files */

if ((infp = fopen(argv[1], "r")) == NULL){

 perror(argv[1]);

 return(1);

}

if ((outfp = fopen(argv[2], "w")) == NULL){

 perror(argv[2]);

 return(1);

}

May 9, 2024 ECS 36A, Spring Quarter 2024 38

On Linux, it does not
matter whether the files
are binary data or text.
On some other systems,
like Windows, it might.
On those systems, use
"rb" and "wb" rather
than "r" and "w",
respectively.

Part of Main Routine of sbcopy.c

while((nread = fread(buf, sizeof(char), BUFFERSIZE, infp)) != 0)

 if (fwrite(buf, sizeof(char), nread, outfp) != nread){

 perror(argv[2]);

 return(1);

 }

if (ferror(infp)){

 /* the read failed because of an error, not an EOF */

 fprintf(stderr, "%s: read error; quitting\n", argv[1]);

 return(1);

}

May 9, 2024 ECS 36A, Spring Quarter 2024 39

Another Recursive Program: sort.c

• This sorts integers by finding the smallest number and putting it at
the beginning
• Basic idea:

if number of elements in list is 1 or 0:
 list is sorted – just return
find the smallest number in the list
swap it and the first number
sort the rest of the list

May 9, 2024 ECS 36A, Spring Quarter 2024 40

Problem

• sort.c reads from an array of known length
• User must enter numbers into the program
• The compiler can compute the length (or the user can enter it)
So how do we get around this?

May 9, 2024 ECS 36A, Spring Quarter 2024 41

Dynamic Memory Allocation

• Static memory allocation occurs when you declare a variable
int num;

• Compiler creates space for this variable
• There is also a pool of memory (the “heap”) that is available but

initially unused
• Dynamic memory occurs when you obtain memory space this pool
• Allocate: obtaining the space from the pool
• Allocation: the amount of space you get
• Deallocate, free: releasing memory that has been allocated; it goes back to

the pool

May 9, 2024 ECS 36A, Spring Quarter 2024 42

A Useful Operator

• To get the number of bytes in a data type, use sizeof
• Example: on a 32-but machine:
• sizeof(char) is 1
• sizeof(int) is 4
• sizeof(float) is 4
• sizeof(double) is 8

• Works for variables, too
• if a is an int, sizeof(a) is 4

May 9, 2024 ECS 36A, Spring Quarter 2024 43

But Be Careful!

char a[100]

• Tempting to get the size of an array like this:
sizeof(a)

• Here, a is a pointer constant, so sizeof returns the number of bytes in that
pointer, not the size of the array!

• To get the number of bytes in an array, use
sizeof(a[0]) * 100

 where 100 is the number of elements in the array
• The a[0] is one element; works as all elements are of the same type

May 9, 2024 ECS 36A, Spring Quarter 2024 44

Allocation Functions: malloc()

• Basic function
void *malloc(size_t space)

• Allocate space bytes of memory, returning its address; returns NULL if
not available
• Type size_t is same as unsigned int

• Declared void * so that it can be coerced into any type of pointer
char *p;

if ((p = (void *) malloc(100)) == NULL)

 error handling

May 9, 2024 ECS 36A, Spring Quarter 2024 45

Allocation Functions: calloc()

• Variant
void *calloc(size_t nelt, size_t space)

• Like malloc, but:
• Gives you space in terms of elements and size of element, rather than a

number of bytes
• Memory is zeroed out; malloc() does not do so, and whatever is in that

memory before call to malloc() is there once allocated

May 9, 2024 ECS 36A, Spring Quarter 2024 46

Allocation Functions: realloc()

• Enlargening space already allocated (say pmem points to it):
void *realloc(void *pmem, size_t nbytes)

• This allocates nbytes of space, and the contents of *pmem are copied
into the beginning of the new space
• The new space may simply extend what pmem points to
• Or, it may be completely new space, in which case what pmem points to is

deallocated
• If insufficient memory available, returns NULL and leaves the space pmem

points to untouched, neither moved nor deallocated

May 9, 2024 ECS 36A, Spring Quarter 2024 47

Allocation Functions: realloc()

• Common way to use this:
if ((pmem = realloc(pmem, 1000)) == NULL) . . .
• On success, pmem now points to a chunk of memory of size 1000 bytes
• On failure, pmem is now NULL — and you lose the address of the memory

pmem used to point to

• Here’s the right way:
tempptr = realloc(pmem, 1000);

if (tempptr == NULL) error handling;

else pmem = tempptr;

May 9, 2024 ECS 36A, Spring Quarter 2024 48

Deallocation Function: free()

• To release memory allocated by one of the allocation functions, use:
• void free(void *pmem)
• If pmem is NULL, this does nothing
• Do not free memory that has already been freed!
• Called a double free error and can often be a vulnerability
• In all cases, the result is undefined

May 9, 2024 ECS 36A, Spring Quarter 2024 49

Another Recursive Program: usort1.c

• Problem with earlier sort.c: numbers are embedded in program
• Better: have users enter the numbers
• Basic idea:

ask user how many numbers they want sorted
allocate the space
read in that many integers – if EOF entered, quit at once

May 9, 2024 ECS 36A, Spring Quarter 2024 50

Structures

• Data structure used to group elements of a different type together
• Example: student registration number database
• See element below

May 9, 2024 ECS 36A, Spring Quarter 2024 51

int regnumber;

char *name;
struct student {
 char *name; /* student name */
 int regnumber; /* registration number */
};

type of structure
field

Referring to a Structure

Here’s how you declare a variable of the structure:
struct student xyzzy, *pxyzzy;

It’s clumsy to write that, so you can define an alias for the type:
typedef struct student STUDENT;

The latter essentially produces a new type, STUDENT, that can be used
wherever struct student can:
STUDENT xyzzy, *pxyzzy;

May 9, 2024 ECS 36A, Spring Quarter 2024 52

Another Declarations

struct student {
 char *name; /* student name */

 int regnumber; /* registration number */

} xyzzy, *pxyzzy;

• Declares type struct student and 2 variables, xyzzy (an
instance of struct student) and pxyzzy (a pointer to an
instance of struct student)

May 9, 2024 ECS 36A, Spring Quarter 2024 53

And Now, With a Typedef

typedef struct student {
 char *name; /* student name */

 int regnumber; /* registration number */

} STUDENT;
STUDENT xyzzy, *pxyzzy;

This defines a new type, STUDENT, which is the same as the type
struct student. Here xyzzy is a variable of type STUDENT and
pxyzzy is a pointer to an instance of STUDENT.

May 9, 2024 ECS 36A, Spring Quarter 2024 54

But Be Careful

• typedef defines an alias for a type
• #define does textual substitution
typedef int *PINT;

PINT a, b, c

• Now a, b, and c are all pointers to integers
#define PINT int *

PINT a, b, c; /* becomes int * a, b, c; */

• Now a is a pointer to an integer, and b and c are integers

May 9, 2024 ECS 36A, Spring Quarter 2024 55

Linked List

• A list composed of instantiations of structures
• One element is whatever is to be sorted (int, for us)
• Another element is a pointer to the next element; NULL if none

May 9, 2024 ECS 36A, Spring Quarter 2024 56

13 82 16 5 –1 99 00

Structure for This List

struct node {
 int num;

 struct node *next;

};
struct node *list;

May 9, 2024 ECS 36A, Spring Quarter 2024 57

This holds the integer
that you read in

This holds the pointer
to the next element
in the linked list; it’s
NULL if it’s at the end

This points to the first
element of the list

Changing How Memory Is Allocated

• Now you can allocate memory one element (“node”) at a time
• Insertion at beginning is like this (see ”linked.c”, ll. 72–76):
• new->next = first;
• list = new;

• Insertion in the middle between prev and succ is (see “linked.c”, ll.
78–97):
• new->next = succ;
• prev->next = new;

• Insertion at the end nomore of the list (same as above):
• nomore->next = new;

May 9, 2024 ECS 36A, Spring Quarter 2024 58

Insertion

May 9, 2024 ECS 36A, Spring Quarter 2024 59

headList

1

235 12 49

Insertion: At the Beginning of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 60

headList

1

235 12 49

First, change the pointer in the new node to point to
the head of the list (where headList points; just copy
the pointer)

Insertion: At the Beginning of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 61

headList

1

235 12 49

Next, change the pointer to the head of the list to
point to the new node

Code for This

• new is a pointer to the new node, headList points to the head of the
list
• First, make new point to the old head. of the list
new->next = headList;

• Next, make the pointer to the head of the list point to new
headList = new;

May 9, 2024 ECS 36A, Spring Quarter 2024 62

Insertion: In the Middle of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 63

headList

15

235 12 49

First, scan down the list until you reach the node
before which the new node goes.

new node goes after this one

Insertion: In the Middle of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 64

headList

15

235 12 49

Change the pointer in the new node to point to the
first node after where the new node is to go

new node goes after this one

Insertion: In the Middle of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 65

headList

15

235 12 49

Next, have the pointer in the node before where the
new node is to go point to the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node that new goes after
for(p = headList;
 p != NULL && p->next < new->next;
 p = p->next)
 /* do nothing ;
• Next, change the pointer in new to point to the node after where this one goes
new->next = p->next;
• Finally, make the node p points to point to new
p->next = new;

May 9, 2024 ECS 36A, Spring Quarter 2024 66

Insertion: At the End of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 67

headList

1

235 12 49

First, scan down the list until you reach the end node

new node goes after this one

Insertion: At the End of the List

May 9, 2024 ECS 36A, Spring Quarter 2024 68

headList

68

235 12 49

Next, change the pointer in the end node to point to
the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node at the end
for(p = headList;
 p != NULL && p->next != NULL;
 p = p->next)
 /* do nothing */;
• Next, change the pointer in what p points to to point to new
p->next = new;
• This may be an excess, but make sure new’s pointer field is NULL
new->next = NULL;

May 9, 2024 ECS 36A, Spring Quarter 2024 69

Multiple Arrays

• Need to store several data of different types about something
• Example: sort planets by their diameters
• Use 2 arrays
• char *names[9]
• int diameters[9]

• When sorting, need to keep both arrays aligned
• So when swapping 2 elements of array diameter, the corresponding elements

of array names must also be swapped

• Alternate approach: use structures!

May 9, 2024 ECS 36A, Spring Quarter 2024 70

Same with Structures

• Instead of 2 arrays, combine into one structure for each element, and
use an array of structures

struct celestial {

 char *name; /* pointer to name of planet */

 int diameter; /* diameter of planet in km */
} planets[9];

• This allocates space for 9 planets
• When you swap elements, you only need to swap one, not two, as in

the parallel arrays case

May 9, 2024 ECS 36A, Spring Quarter 2024 71

