
ECS 36A, May 16, 2024

May 16, 2024 ECS 36A, Spring Quarter 2024 1

Announcements

• Grades for the midterm are posted
• Thursday and Friday discussion sections will go through the midterm
• Homework 3 is out now

May 16, 2024 ECS 36A, Spring Quarter 2024 2

Structures

• Data structure used to group elements of a different type together
• Example: student registration number database
• See element below

May 16, 2024 ECS 36A, Spring Quarter 2024 3

int regnumber;

char *name;
struct student {
 char *name; /* student name */
 int regnumber; /* registration number */
};

type of structure
field

Referring to a Structure

Here’s how you declare a variable of the structure:
struct student xyzzy, *pxyzzy;

It’s clumsy to write that, so you can define an alias for the type:
typedef struct student STUDENT;

The latter essentially produces a new type, STUDENT, that can be used
wherever struct student can:
STUDENT xyzzy, *pxyzzy;

May 16, 2024 ECS 36A, Spring Quarter 2024 4

Another Declarations

struct student {
 char *name; /* student name */

 int regnumber; /* registration number */

} xyzzy, *pxyzzy;

• Declares type struct student with 2 fields, xyzzy (an instance
of struct student) and pxyzzy (a pointer to an instance of
struct student)

May 16, 2024 ECS 36A, Spring Quarter 2024 5

And Now, With a Typedef

typedef struct student {
 char *name; /* student name */

 int regnumber; /* registration number */

} STUDENT;
STUDENT xyzzy, *pxyzzy;

This defines a new type, STUDENT, which is the same as the type
struct student. Here xyzzy is a variable of type STUDENT and
pxyzzy is a pointer to an instance of STUDENT.

May 16, 2024 ECS 36A, Spring Quarter 2024 6

But Be Careful

• typedef defines an alias for a type
• #define does textual substitution
typedef int *PINT;

PINT a, b, c;

• Now a, b, and c are all pointers to integers
#define PINT int *

PINT a, b, c; /* becomes int * a, b, c; */

• Now a is a pointer to an integer, and b and c are integers

May 16, 2024 ECS 36A, Spring Quarter 2024 7

Linked List

• A list composed of instantiations of structures
• One element is whatever is to be sorted (int, for us)
• Another element is a pointer to the next element; NULL if none

May 16, 2024 ECS 36A, Spring Quarter 2024 8

13 82 16 5 –1 99 00

Structure for This List

struct node {
 int num;

 struct node *next;

};
struct node *list;

May 16, 2024 ECS 36A, Spring Quarter 2024 9

This holds the integer
that you read in

This holds the pointer
to the next element
in the linked list; it’s
NULL at the end

This points to the first
element of the list

Changing How Memory Is Allocated

• Now you can allocate memory one element (“node”) at a time
• Insertion at beginning is like this (see ”linked.c”, ll. 72–76):

new->next = first;
list = new;

• Insertion in the middle between prev and succ is (see “linked.c”, ll.
78–97):
new->next = succ;
prev->next = new;

• Insertion at the end, after last (see “linked.c”, same lines as above) :
last->next = new;

May 16, 2024 ECS 36A, Spring Quarter 2024 10

Insertion

May 16, 2024 ECS 36A, Spring Quarter 2024 11

headList

1

235 12 49

Insertion: At the Beginning of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 12

headList

1

235 12 49

First, change the pointer in the new node to point to
the head of the list (where headList points; just copy
the pointer)

Insertion: At the Beginning of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 13

headList

1

235 12 49

Next, change the pointer to the head of the list to
point to the new node

Code for This

• new is a pointer to the new node, headList points to the head of the
list
• First, make new point to the old head. of the list
new->next = headList;

• Next, make the pointer to the head of the list point to new
headList = new;

May 16, 2024 ECS 36A, Spring Quarter 2024 14

Insertion: In the Middle of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 15

headList

15

235 12 49

First, scan down the list until you reach the node
before which the new node goes.

new node goes after this one

Insertion: In the Middle of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 16

headList

15

235 12 49

Change the pointer in the new node to point to the
first node after where the new node is to go

new node goes after this one

Insertion: In the Middle of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 17

headList

15

235 12 49

Next, have the pointer in the node before where the
new node is to go point to the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node that new goes after
for(p = headList;
 p != NULL && p->next < new->next;
 p = p->next)
 /* do nothing */;
• Next, change the pointer in new to point to the node after where this one goes
new->next = p->next;
• Finally, make the node p points to point to new
p->next = new;

May 16, 2024 ECS 36A, Spring Quarter 2024 18

Insertion: At the End of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 19

headList

68

235 12 49

First, scan down the list until you reach the end node

new node goes after this one

Insertion: At the End of the List

May 16, 2024 ECS 36A, Spring Quarter 2024 20

headList

68

235 12 49

Next, change the pointer in the end node to point to
the new node

new node goes after this one

Code for This

• new is a pointer to the new node, headList points to the head of the list, and p is
a pointer to node
• First, find the node at the end
for(p = headList;
 p != NULL && p->next != NULL;
 p = p->next)
 /* do nothing */;
• Next, change the pointer in what p points to to point to new
p->next = new;
• This may be an excess, but make sure new’s pointer field is NULL
new->next = NULL;

May 16, 2024 ECS 36A, Spring Quarter 2024 21

Multiple Arrays

• Need to store several data of different types about something
• Example: sort planets by their diameters
• Use 2 arrays
• char *names[9]
• int diameters[9]

• When sorting, need to keep both arrays aligned
• So when swapping 2 elements of array diameter, the corresponding elements

of array names must also be swapped

• Alternate approach: use structures!

May 16, 2024 ECS 36A, Spring Quarter 2024 22

Same with Structures

• Instead of 2 arrays, combine into one structure for each element, and
use an array of structures

struct celestial {

 char *name; /* pointer to name of planet */

 int diameter; /* diameter of planet in km */
} planets[9];

• This allocates space for 9 planets
• When you swap elements, you only need to swap one, not two, as in

the parallel arrays case

May 16, 2024 ECS 36A, Spring Quarter 2024 23

gdb

• A dynamic debugger
• To run it, compile your program with the –g option
• This adds in debugging information gdb uses
• You can use gdb without it but it simplifies the use greatly

• Then load it into gdb by:
gdb executable

• Note you use the executable file and not the source code file
• You can also load the executable once gdb starts

May 16, 2024 ECS 36A, Spring Quarter 2024 24

Inside the gdb Shell

• Once started, you get a prompt “(gdb)”
• If you forgot to name the executable in the command line:

(gdb) file executable

• One other handy feature
(gdb) help

• You will get a list of commands you can ask for help on
• Then type

(gdb) help command

May 16, 2024 ECS 36A, Spring Quarter 2024 25

Executing the program

• Type:
(gdb) run arg1 . . . argn

• This runs the program with command line arguments arg1 through
argn
• If there are no command line arguments, just type ``run’’

• If there are no problems, the program runs to completion
• If the program stop with a message like this, there’s a problem
Program received signal SIGSEGV, Segmentation fault.
0x00005555555551b5 in nfact (n=<error reading variable: Cannot access
memory at address 0x7fffff7fefec>) at nfact2.c:12

May 16, 2024 ECS 36A, Spring Quarter 2024 26

Stopping the Program Before It Ends

• A breakpoint causes the execution to stop at that point
• Here’s an example:

(gdb) break 15

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

• This causes execution to stop when it reaches line 15
• If you have multiple source files, name the file before the number:

(gdb) break nfact2.c:15

• It shows some useful information
Breakpoint 1, nfact (n=15) at nfact2.c:15

15 x = nfact(n+1);

May 16, 2024 ECS 36A, Spring Quarter 2024 27

Conditional Breakpoints

• Causes a breakpoint to stop execution when a condition is met
• Here’s an example:

(gdb) break 15 if n >= 20

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

• This causes execution to stop when it reaches line 15 and n is 20 or
more
• If you have multiple source files, name the file before the number:

(gdb) break nfact2.c:15 15 if n >= 20

May 16, 2024 ECS 36A, Spring Quarter 2024 28

What Can You Do When Stopped?

• You can continue the execution from the breakpoint:
(gdb) continue

• You can execute one statement at a time to step through the program
• If it encounters a function, it goes into that function and executes one

statement at a time

(gdb) step
• n (next) is like s but treats the function as part of the statement and does not

go into it

(gdb) next

May 16, 2024 ECS 36A, Spring Quarter 2024 29

Printing Values

• You can print the value of an expression
(gdb) print expression

• If you prefer hexadecimal
(gdb) print/x expression

May 16, 2024 ECS 36A, Spring Quarter 2024 30

Watchpoints

• Like breakpoints, but keyed to variables
(gdb) watch x

• Whenever x changes values, the program stops and gdb prints old
and new values of x

May 16, 2024 ECS 36A, Spring Quarter 2024 31

Other Useful Commands

• backtrace
• where
• These show the stack, that is, the functions that have been called and not yet

returned
• delete 2
• Delete breakpoint 2 (or watchpoint 2)

• info breakpoints
• List the breakpoints (and watchpoints)

• info frame
• Show the current frame

May 16, 2024 ECS 36A, Spring Quarter 2024 32

