ECS 36A, May 16, 2024

Announcements

- Grades for the midterm are posted
- Thursday and Friday discussion sections will go through the midterm
- Homework 3 is out now

Structures

- Data structure used to group elements of a different type together
- Example: student registration number database
 - See element below

Referring to a Structure

Here's how you declare a variable of the structure:

struct student xyzzy, *pxyzzy;

It's clumsy to write that, so you can define an alias for the type:

typedef struct student STUDENT;

The latter essentially produces a new type, STUDENT, that can be used wherever struct student can:

STUDENT xyzzy, *pxyzzy;

Another Declarations

struct student {

- char *name; /* student name */
- int regnumber; /* registration number */
- } xyzzy, *pxyzzy;
- Declares type struct student with 2 fields, xyzzy (an instance of struct student) and pxyzzy (a pointer to an instance of struct student)

And Now, With a Typedef

typedef struct student {

char *name; /* student name */

int regnumber; /* registration number */

} STUDENT;

```
STUDENT xyzzy, *pxyzzy;
```

This defines a new type, STUDENT, which is the same as the type struct student. Here xyzzy is a variable of type STUDENT and pxyzzy is a pointer to an instance of STUDENT.

But Be Careful

- typedef defines an alias for a type
- #define does textual substitution

typedef int *PINT;

PINT a, b, c;

- Now a, b, and c are all pointers to integers #define PINT int * PINT a, b, c; /* becomes int * a, b, c; */
- Now a is a pointer to an integer, and b and c are integers

Linked List

- A list composed of instantiations of structures
 - One element is whatever is to be sorted (int, for us)
 - Another element is a pointer to the next element; NULL if none

Structure for This List

Changing How Memory Is Allocated

- Now you can allocate memory one element ("node") at a time
- Insertion at beginning is like this (see "linked.c", ll. 72-76):
 new->next = first;
 list = new;
- Insertion in the middle between *prev* and *succ* is (see "linked.c", II. 78–97):

new->next = succ;

prev->next = new;

• Insertion at the end, after last (see "linked.c", same lines as above) :
 last->next = new;

Insertion

Insertion: At the Beginning of the List

Insertion: At the Beginning of the List

Code for This

- new is a pointer to the new node, headList points to the head of the list
- First, make new point to the old head. of the list

new->next = headList;

• Next, make the pointer to the head of the list point to new headList = new;

Insertion: In the Middle of the List

First, scan down the list until you reach the node before which the new node goes.

Insertion: In the Middle of the List

Insertion: In the Middle of the List

Code for This

- new is a pointer to the new node, headList points to the head of the list, and p is a pointer to node
- First, find the node that new goes after

```
for(p = headList;
 p != NULL && p->next < new->next;
     p = p->next)
 /* do nothing */;
```

- Next, change the pointer in new to point to the node after where this one goes
 new->next = p->next;
- Finally, make the node p points to point to new

```
p->next = new;
```

Insertion: At the End of the List

First, scan down the list until you reach the end node

Insertion: At the End of the List

Code for This

- new is a pointer to the new node, headList points to the head of the list, and p is a pointer to node
- First, find the node at the end

```
for(p = headList;
 p != NULL && p->next != NULL;
     p = p->next)
 /* do nothing */;
```

• Next, change the pointer in what p points to to point to new

p->next = new;

This may be an excess, but make sure new's pointer field is NULL
 new->next = NULL;

Multiple Arrays

- Need to store several data of different types about something
- Example: sort planets by their diameters
- Use 2 arrays
 - char *names[9]
 - int diameters[9]
- When sorting, need to keep both arrays aligned
 - So when swapping 2 elements of array diameter, the corresponding elements of array names must also be swapped
- Alternate approach: use structures!

Same with Structures

- Instead of 2 arrays, combine into one structure for each element, and use an array of structures
- struct celestial {
 - char *name; /* pointer to name of planet */
 - int diameter; /* diameter of planet in km */
- } planets[9];
- This allocates space for 9 planets
- When you swap elements, you only need to swap one, not two, as in the parallel arrays case

gdb

- A dynamic debugger
- To run it, compile your program with the -g option
 - This adds in debugging information *gdb* uses
 - You can use *gdb* without it but it simplifies the use greatly
- Then load it into *gdb* by:

```
gdb executable
```

- Note you use the executable file and *not* the source code file
 - You can also load the executable once *gdb* starts

Inside the gdb Shell

- Once started, you get a prompt "(gdb)"
- If you forgot to name the executable in the command line:

(gdb) file executable

• One other handy feature

(gdb) help

- You will get a list of commands you can ask for help on
- Then type

(gdb) help command

Executing the program

• Type:

(gdb) run arg_1 . . arg_n

- This runs the program with command line arguments *arg*₁ through *arg*_n
 - If there are no command line arguments, just type ``run"
- If there are no problems, the program runs to completion
- If the program stop with a message like this, there's a problem
 Program received signal SIGSEGV, Segmentation fault.
 0x000055555555555551b5 in nfact (n=<error reading variable: Cannot access memory at address 0x7fffff7fefec>) at nfact2.c:12

Stopping the Program Before It Ends

- A *breakpoint* causes the execution to stop at that point
- Here's an example:

(gdb) break 15

Breakpoint 1 at 0x555555551b8: file nfact2.c, line 15.

- This causes execution to stop when it reaches line 15
 - If you have multiple source files, name the file before the number: (gdb) break nfact2.c:15
- It shows some useful information

Breakpoint 1, nfact (n=15) at nfact2.c:15

```
15 x = nfact (n+1);
```

Conditional Breakpoints

- Causes a breakpoint to stop execution when a condition is met
- Here's an example:

```
(gdb) break 15 if n \ge 20
```

Breakpoint 1 at 0x5555555551b8: file nfact2.c, line 15.

- This causes execution to stop when it reaches line 15 and n is 20 or more
 - If you have multiple source files, name the file before the number:

```
(gdb) break nfact2.c:15 15 if n >= 20
```

What Can You Do When Stopped?

• You can continue the execution from the breakpoint:

(gdb) continue

- You can execute one statement at a time to step through the program
 - If it encounters a function, it goes into that function and executes one statement at a time

(gdb) step

 n (next) is like s but treats the function as part of the statement and does not go into it

(gdb) next

Printing Values

• You can print the value of an expression

(gdb) print expression

• If you prefer hexadecimal

(gdb) print/x expression

Watchpoints

• Like breakpoints, but keyed to variables

(gdb) watch x

• Whenever x changes values, the program stops and *gdb* prints old and new values of x

Other Useful Commands

- backtrace
- where
 - These show the stack, that is, the functions that have been called and not yet returned
- delete 2
 - Delete breakpoint 2 (or watchpoint 2)
- info breakpoints
 - List the breakpoints (and watchpoints)
- info frame
 - Show the *current* frame