
ECS 150, Operating Systems Spring Quarter 2008

Version of April 27, 2008 at 12:30 PM Page 1

Paging and Address Translation

Introduction
This shows the function used to map a logical address to a physical address for some paging 
schemes.  Throughout this handout, an address in virtual memory is a pair (logical_page, offset) 
where logical_page is the page number within the logical address space and offset the offset into 
that page.  Also, page_size is the size of the page (which is a multiple of 2). We will assume the 
entire program is in memory, so no error handling is given; were this assumption false, the situa-
tion where the requested address were not in memory would need to be handled (by generating a 
page fault and loading the necessary page):

Paging Address Translation by Direct Mapping
This method stores the page table in main memory and the address of this table in the process con-
trol block, in a register called the page table base register.  Let the page table base register be 
called pt_base_register, and let memory represent the main store of the computer. Then:

function NL_map((logical_page, offset)): physical_address;
begin

NL_map := memory[pt_base_register + logical_page] * 
page_size + offset;
end (* NL_map *)

In pictures, here is what is going on:

Paging Address Translation by Associative Mapping
In this algorithm, assoc_page_table represents an associative memory.  This function can check a 
type of memory called "associative memory" (or "cache" or "lookaside memory") which stores 
both a frame number and a page number.  The search is done in parallel, and is much faster than a 
linear (or binary) search.  The function returns the frame number associated with its argument:



ECS 150, Operating Systems Spring Quarter 2008

Version of April 27, 2008 at 12:30 PM Page 2

function NL_map((logical_page, offset)): physical_address;
begin

NL_map := assoc_page_table(logical_page) *
page_size + offset;

end (* NL_map *)

Paging Address Translation with Combined Associative and Direct Mapping
This combines the above two methods.  The array page_table is a small associative store that can 
hold only a few page numbers; there is also a page table kept in memory.  For this method, we 
shall assume that if there is no entry for logical_page in the associative memory, 
assoc_page_table returns –1.  Taking everything else as in the previous two sections:

function NL_map((logical_page, offset)): physical_address;
var frame_number: integer;
begin

frame_number := assoc_page_table(logical_page);
if frame_number = -1 then(* not in associative memory *)

NL_map := memory[pt_base_register + logical_page]
* page_size + offset;

else
NL_map := frame_number * page_size + offset;

end (* NL_map *)

This is the most common method, and is used in modern computers with paging. 
 


