
Analysis of a Solution to a Synchronization Problem
In discussion section, I presented the following solution to the following problem.
Problem. A binary semaphore is most commonly defined as a semaphore whose integer value can range only
between 0 and 1. Implement the usual type of semaphore using binary semaphores.
I gave the following solution:

1 type semaphore = record of
2 value : integer = 0; (* value of the usual semaphore *)
3 bsem : binsemaphore = 0; (* semaphore for block *)
4 mutex : binsemaphore = 1; (* semaphore for mutual exclusion *)
5 end;
6
7 procedure udown(s: semaphore)
8 begin
9 down(s.mutex);

10 if s.value = 0 then begin
11 up(s.mutex);
12 down(s.bsem);
13 down(s.mutex);
14 end;
15 s.value := s.value - 1;
16 up(S.mutex);
17 end;
18
19 procedure uup(s : semaphore)
21 begin
22 down(s.mutex);
23 if s.value = 0 then
24 up(s.bsem);
25 s.value := s.value + 1;
26 up(s.mutex);
27 end;

The basic idea of this solution is to synchronize the uup and the down of the usual semaphores using bsem. The
field value keeps track of the value of the usual semaphore. Because two processes may be calling these
functins simultaneously, we need to ensure mutual exclusion; the semaphore field mutex does this. Note the
down(s.bsem) is done outside this area of mutual exclusion, to prevent deadlock.
I also encouraged students to try to find problems with all solutions to synchronization problems, including
(indeed, especially) with the ones I gave. A student did, and found a problem. The above solution does not
work.
Here is a demonstration. Suppose we have 3 processes, p, q, and r sharing a semaphore s, initialized to 0.
1. Process p calls udown(s) first and enters the region of mutual exclusion. It releases mutual exclusion at line

11 and blocks at line 12.
2. Process q calls uup(s). At line 24, it increments s.value, and process p unblocks. At this point, s.value is 1.
3. Process q does not advance further at this time.
4. Before process q can exit the uup call, a third process r calls udown(s). It blocks at line 9.
5. Process q exits the uup call. At this point, s.value is 1.
6. Process r unblocks, and at line 10, as s.value is 1, the process immediately goes to line 15.
7. Process r unblocks, and at line 10, as s.value is 1, the process immediately goes to line 15. Now, s.value

becomes 0, and process r leaves udown.
8. Process p now continues. It leaves the function udown, resetting s.value to -1.
Let us review what happened. The initial value of s was 0. One process called uup and two called udown. If the
semaphore were correctly implemented, one process would still be blocked on udown. But as the above shows,
no processes are blocked. So the soltion is flawed.
So, how do we do this right? The problem is that the process blocked on udown unblocked and then tried to
re-enter the zone of mutual excluson. That cannot happen until the unblocking process leaves uup. There is a

ECS 150, Operating Systems Spring Quarter 2008

Version of June 4, 2008 at 10:55 AM Page 1



gap between the leaving of uup and the taking of mutual exclusion by the now-unblocked process in udown.
So, what we can do is simply not release mutual exclusion at the end of uup. Basically, we look at s.value. If
that is non-zero, no process is blocked on the semaphore, so we release mutual exclusion. If it is zero, a process
is blocked on the semaphore, so we release the blocked process. That is the basis for the following solution:

1 type semaphore = record of
2 value : integer = 0; (* value of the usual semaphore *)
3 bsem : binsemaphore = 0; (* semaphore for block *)
4 mutex : binsemaphore = 1; (* semaphore for mutual exclusion *)
5 end;
6
7 procedure udown(s: semaphore)
8 begin
9 down(s.mutex);

10 s.value := s.value - 1;
11 if s.value < 0 then begin
12 up(s.mutex);
13 down(s.bsem);
14 end;
15 up(S.mutex);
16 end;
17
18 procedure uup(s : semaphore)
19 begin
20 down(s.mutex);
21 s.value := s.value + 1;
22 if s.value < 0 then
23 up(s.bsem);
24 else
25 up(s.mutex);
26 end;

Note the manipulations of s.value moves before the conditional. This prevents two processes from manipulating
that field within the zone of mutual exclusion. Also, right after releasing the blocked semaphore, the process in
uup exits that function.

ECS 150, Operating Systems Spring Quarter 2008

Version of June 4, 2008 at 10:55 AM Page 2


