
Bounded Buffer Problem without Synchronization
This handout demonstrated the problem with process interaction when no synchronization is performed. This
problem is called the Bounded Buffer Problem or the Producer/Consumer Problem. The producer process writes
items into a finite buffer, and the consumer process reads them. All the variables are shared.
First, the shared variables:

struct item buffer[n];
int in, out, counter;

buffer is the shared buffer. counter is the number of elements currently in the shared buffer. in is the index of
the element into which the next item is to be placed, and out is the index of the element from which the next
item is to be removed.

Second Proposed Solution
Here, inCS[0] is true when process 0 is in the critical section, and false otherwise. A similar statement holds for
inCS[1].
Now, the producer process code; we only list the code that operates on the shared variables.

while(1) {
p = generate_item();
while (counter == n)

/* do nothing */ ;
buffer[in] = p;
in = (in + 1) % n;
counter++;

}

The consumer process code is similar.

while(1) {
while (counter == 0)

/* do nothing */ ;
p = buffer[out];
out = (out + 1) % n;
counter--;

}

If each loop is executed separately, these processes work as expected. But if they are intermingled, the result
may be incorrect.
As an example, suppose both processes try to alter count at the same time. Let's say the compiler compiled the
statements into the following:

P1 r1 = counter; C1 r2 = counter;
P2 r1 = r1 + 1; C2 r2 = r1 - 1;
P3 counter = r1; C3 counter = r2;

Let counter be 3 when these are executed. Depending on how these statements are interleaved, the result of
counter may be 2, 3, or 4:
C1 C2 P1 P2 C3 P3 results in counter being 4.
C1 C2 P1 P2 P3 C3 results in counter being 2.
C1 C2 C3 P1 P2 P3 results in counter being 3.
The problem is that two processes manipulated the variable counter simultaneously. Clearly, we need to ensure
just one process does.

ECS 150, Operating Systems Spring Quarter 2008

Version of April 10, 2008 at 10:00 AM Page 1


