
Monitors and Priority Waits
This is an example of a monitor using priority waits. It implements a simple alarm clock; that is, a process calls
alarmclock.wakeme(n), and suspends for n seconds. Note that we are assuming the hardware invokes the
procedure tick to update the clock every second.

1 alarmclock: monitor;
2 var now: integer;
3 wakeup: condition;
4 procedure entry wakeme(n: integer);
5 begin
6 alarmsetting := now + n;
7 while now < alarmsetting do
8 wakeup.wait(alarmsetting);
9 wakeup.signal;

10 end;
11 procedure entry tick;
12 begin
13 now := now + 1;
14 wakeup.signal;
15 end.

lines 2-3 Here, now is the current time (in seconds) and is updated once a second by the procedure tick. When a
process suspends, it will do a wait on the condition wakeup.
line 6 This computes the time at which the process is to be awakened.
lines 7-8 The process now checks that it is to be awakened later, and then suspends itself.
line 9 Once a process has been woken up, it signals the process that is to resume next. That process checks to
see if it is time to wake up; if not, it suspends again (hence the while loop above, rather than an if statement).
If it is to wake up, it signals the next process...
line 14 This is done once a second (hence the addition of 1 to now). The processes to be woken up are queued
in order of remaining time to wait with the next one to wake up first. So, when tick signals, the next one to
wake up determines if it is in fact time to wake up. If not, it suspends itself; if so, it proceeds.

ECS 150, Operating Systems Spring Quarter 2008

Version of April 15, 2008 at 6:08 PM Page 1


