
Producer Consumer Problem
This algorithm uses a monitor to solve the producer/consumer (or bounded-buffer) problem.

1 buffer: monitor;
2 var slots: array [0..n-1] of item;
3 count, in, out: integer;
4 notempty, notfull: condition;
5 procedure entry deposit(data: item);
6 begin
7 if count = n then
8 notfull.wait;
9 slots[in] := data;

10 in := in + 1 mod n;
11 count := count + 1;
12 notempty.signal;
13 end;
14 procedure entry extract(var data: item);
15 begin
16 if count = 0 then
17 notempty.wait;
18 data := slots[out];
19 out := out + 1 mod n;
20 count := count - 1;
21 notfull.signal;
22 end;
23 begin
24 count := 0; in := 0; out := 0;
25 end.

lines 2-4 Here, slots is the actual buffer, count the number of items in the buffer, and in and out the indices of
the next element of slots where a deposit is to be made or from which an extraction is to be made. There are
two conditions we care about: if the buffer is not full (represented by the condition variable notfull), and if the
buffer is not empty (represented by the condition variable notempty).
line 5 The keyword entry means that this procedure may be called from outside the monitor. It is called by
placing the name of the monitor first, then a period, then the function name; so, buffer.deposit(...).
lines 7-8 This code checks to see if there is room in the buffer for a new item. If not, the process blocks on the
condition notfull ; when some other process does extract an element from the buffer, then there will be room and
that process will signal on the condition notfull, allowing the blocked one to proceed. Note that while blocked
on this condition, other processes may access procedures within the monitor.
lines 9-11 This code actually deposits the item into the buffer. Note that the monitor guarantees mutual
exclusion.
line 12 Just as a producer will block on a full buffer, a consumer will block on an empty one. This indicates to
any such consumer process that the buffer is no longer empty, and unblocks exactly one of them. If there are no
blocked consumers, this is effectively a no-op.
line 14 As with the previous procedure, this is called from outside the monitor by buffer.extract(...).
lines 16-17 This code checks to see if there is any unconsumed item in the buffer. If not, the process blocks on
the condition notempty; when some other process does deposit an element in the buffer, then there will be
something for the consumer to extract and that producer process will signal on the condition notempty, allowing
the blocked one to proceed. Note that while blocked on this condition, other processes may access procedures
within the monitor.
lines 18-20 This code actually extracts the item from the buffer. Note that the monitor guarantees mutual
exclusion.
line 21 Just as a consumer will block on an empty buffer, a producer will block on a full one. This indicates to
any such producer process that the buffer is no longer full, and unblocks exactly one of them. If there are no
blocked producers, this is effectively a no-op.
lines 23-25 This is the initialization part.

ECS 150, Operating Systems Spring Quarter 2008

Version of April 15, 2008 at 6:40 PM Page 1



ECS 150, Operating Systems Spring Quarter 2008

Version of April 15, 2008 at 6:40 PM Page 2


