
Producer/Consumer Problem
This algorithm uses semaphores to solve the producer/consumer (or bounded buffer) problem.

1 var buffer: array [0..n-1] of item;
2 full, empty, mutex: semaphore;
3 nextp, nextc: item;
4 begin
5 full := 0;
6 empty := n;
7 mutex := 1;
8 parbegin
9 repeat (* producer process *)

10 (* produce an item in nextp *)
11 down(empty);
12 down(mutex);
13 (* deposit nextp in buffer *)
14 up(mutex);
15 up(full);
16 until false;
17 repeat (* consumer process *)
18 down(full);
19 down(mutex);
20 (* extract an item in nextc *)
21 up(mutex);
22 up(empty);
23 (* consume the item in nextc *)
24 until false;
25 parend;
26 end.

lines 1-3 Here, buffer is the shared buffer, and contains n spaces; full is a semaphore the value of which is the
number of filled slots in the buffer, empty is a semaphore the value of which is the number of emoty slots in
the buffer, and mutex is a semaphore used to enforce mutual exclusion (so only one process can access the
buffer at a time). nextp and nextc are the items produced by the producer and consumed by the consumer,
respectively.
line 5-7 This just initializes all the semaphores. It is the only time anything other than a down or an up
operation may be done to them.
line 10 Since the buffer is not accessed while the item is produced, we don't need to put semaphores around this
part.
lines 11-13 Depositing an item into the buffer, however, does require that the producer process obtain exclusive
access to the buffer. First, the producer checks that there is an empty slot in the buffer for the new item and, if
not, waits until there is (down(empty)). When there is, it waits until it can obtain exclusive access to the buffer
(down(mutex)). Once both these conditions are met, it can safely deposit the item.
lines 14-15 As the producer is done with the buffer, it signals that any other process needing to access the
buffer may do so (up(mutex)). It then indicates it has put another item into the buffer (up(full)).
lines 18-20 Extracting an item from the buffer, however, does require that the consumer process obtain
exclusive access to the buffer. First, the consumer checks that there is a slot in the buffer with an item deposited
and, if not, waits until there is (down(full)). When there is, it waits until it can obtain exclusive access to the
buffer (down(mutex)). Once both these conditions are met, it can safely extract the item.
lines 21-22 As the consumer is done with the buffer, it signals that any other process needing to access the
buffer may do so (up(mutex)). It then indicates it has extracted another item into the buffer (up(empty)).
line 23: Since the buffer is not accessed while the item is consumed, we do not need to put semaphores around
this part.

ECS 150, Operating Systems Spring Quarter 2008

Version of April 15, 2008 at 7:38 PM Page 1


