Analyzing Critical Section Solutions

This handout presents several proposed solutions to the 2 process critical section problem, and analyzes them. In these solutions, one process is numbered 0 and the other is numbered 1. The variable i holds the number corresponding to the process executing the code, and the variable j holds the number corresponding to the other process. All the code shown is shared by both processes, but the variables i and j hold different values.

First Proposed Solution

Here, turn contains the number of the process whose turn it is to execute the critical section.

1 int turn;
2 while (turn != i) /* entry section */
3 /* do nothing */
4 ... /* critical section */
5 turn = j; /* exit section */

Second Proposed Solution

Here, inCS[0] is true when process 0 is in the critical section, and false otherwise. A similar statement holds for inCS[1].

1 int inCS[2] = { 0, 0 }; /* entry section */
2 while (inCS[j]) /* do nothing */
3 inCS[i] = 1; /* critical section */
4 ... /* exit section */
5 inCS[i] = 0;

Third Proposed Solution

Here, interested[0] is true when process 0 wants to enter the critical section, and false otherwise. A similar statement holds for interested[1].

1 int interested[2] = { 0, 0 }; /* entry section */
2 interested[i] = 1;
3 while (interested[j]) /* do nothing */
4 ... /* critical section */
5 interested[i] = 0; /* exit section */

Fourth Proposed Solution

This combines the first and third proposed solutions.

1 int interested[2]; = { 0, 0 }; /* entry section */
2 int turn;
3 interested[i] = 1;
4 turn = j;
5 while (interested[j] && turn == j)
6 /* do nothing */;
 /* critical section */
 ...
 /* exit section */
7 interested[i] = 0;