Interprocess Synchronization and Communication

Goal
To understand how these are implemented we need to look at what they are and why they are necessary.
Parallelism

What Is It?
This is having statements execute simultaneously. Why? The system may have multiple CPUs or may have special units such as Floating Point Units which can compute at the same time as the CPU. Problem: some statements must be completed before others may be begun; for example, consider

1 a: = x+y
2 b: = z+1
3 c: = a-b
4 d: = c+1

1 and 2 must finish before 3 can begin, but 1 and 2 can be done independently. This is a precedence constraint.

Precedence graphs and process flow graphs are used to examine processes for parallel work. example: The following two graphs represent the same thing:

These are really equivalent (one focuses on statements, the other on processes). These graphs must be acyclic.

Bernstein conditions
These describe when statements can be executed in parallel. Define
\[R(S_i) = \{ \text{variables whose value is referenced in statement } s_i \} \]
\[W(S_i) = \{ \text{variables whose value is changed in statement } s_i \} \]

For example, in the example above:

\[R(S_1) = \{ x, y \} \quad R(S_2) = \{ z \} \quad R(S_3) = \{ a, b \} \quad R(S_4) = \{ c \} \]
\[W(S_1) = \{ a \} \quad W(S_2) = \{ b \} \quad W(S_3) = \{ c \} \quad W(S_4) = \{ d \} \]

precedence graph:

Now, Si and Sj may be done concurrently if the Bernstein conditions hold:

\[W(S_i) \ldots W(S_j) = \emptyset \quad \text{and} \quad R(S_i) \ldots W(S_j) = \emptyset \quad \text{and} \quad W(S_i) \ldots R(S_j) = \emptyset \]

In the above example, this agrees with the intuition.

Parallel Programming Constructs

fork, join, quit

The earliest parallel constructs were *fork* and *join*. *Fork* looks like `fork label` and splits the process into two, one of which begins at `label` and the other which falls through.

example:

\[
\text{fork } L; \\
\text{a := x+y;} \\
\text{...} \\
\text{L: } b := z+1;
\]

Join merges processes and has the form `join count label`; count is decremented and if zero, there is a branch to `label`. That is,

\[
\text{count := count - 1;} \\
\text{if count = 0 then goto label;}
\]

(Note: in some texts, process terminates instead of branches.)

Quit terminates process.

example:

\[
\text{count =2;} \\
\text{fork dopar;} \\
\text{a := x+y;} \\
\text{go to donepar;} \\
\text{dopar: } b := z+1; \\
\text{donepar: join count, cont;} \\
\text{quit;} \\
\text{cont: } c := a-b;
\]
d := c+1;

As a second example, the program equivalent to the process flow graph above is:

\[
\begin{align*}
t6 & := 2; \\
t8 & := 3; \\
S1; & \text{fork } p2; \text{fork } pt; \text{fork } p7; \text{quit} \\
p2: & S2; \text{for } L p3: \text{fork } p4; \text{quit;} \\
p5: & S5; \text{join } t6, p6; \text{quit} \\
p7: & S7; \text{join } t8, p8; \text{quit} \\
p3: & S3; \text{join } t8, p8; \text{quit} \\
p4: & S4; \text{join } t6, p6; \text{quit} \\
p6: & S6; \text{join } t8, p8; \text{quit;} \\
p8: & S8; \text{quit}
\end{align*}
\]

where \(S_i \) is the program for \(p_i \).

Strengths: simple, powerful, easy to derive from precedence graphs

Weakness: clumsy, lots of gotos and goto like structures.

parbegin, parend

Dijkstra suggested these as a goto-less mechanism; they bracket statements (or blocks of statements) to be done in parallel.

example:

\[
\text{parbegin} \\
\quad \text{a: } = x+y; \\
\quad \text{b: } = z+1; \\
\text{parend} \\
\quad \text{c: } = a-b; \\
\quad \text{d: } = c+1;
\]

Strength: easy to read, uses principles of modular programming, etc.

Weakness: not so powerful as the fork-join-quit set.

To see why, consider the idea of proper nesting. Let

\(S(a,b) \) represent the serial execution of processes \(a \) and \(b \)

\(P(a,b) \) represent the parallel execution of processes \(a \) and \(b \)

Then a process flow graph is properly nested if it can be described by \(P \), \(S \), and functional composition.

example: the first example's process flow graph is

![Diagram](image-url)
which is $S(S(P(p_1, p_2), p_3, p_4))$

But the second example cannot be so described.

Claim: The second example is not properly nested.

Proof: For something to be properly nested, it must be of the form $S(p_i, p_j)$ or $P(p_i, p_j)$ at the most interior level.

Clearly the example's most interior level is not $P(p_i, p_j)$ as there are no constructs of that form in the graph.

In the graph, all serially connected processes p_i and p_j have at least 1 more process p_k starting or finishing at the node n_{ij} between p_i and p_j; but if $S(p_i, p_j)$ is in the innermost level, there can be no such p_k (else a more interior P or S is needed, contradiction). Hence, it's not $S(p_i, p_j)$ either.

Clearly, \texttt{parbegin-parend} works only when the process flow graph is properly nested.
The problem with process interaction

This is best illustrated by an example, called the *bounded buffer producer/consumer problem*; we use a buffer of \(n \) items.

```haskell
var buffer: array [0..n-1] of item;
in, out: 0...n-1;
counter: 0...n

producer: repeat
    make next p;
    while counter = n do (* nothing *);
    buffer [in] := next p;
    in := (in+1) mod n;
    counter: = counter + 1;
until false;

consumer: repeat
    while counter = 0 do (* nothing *);
    next: = buffer[out];
    out: = (out + 1) mod n
    counter: = counter - 1;
until false;
```

If each loop is executed separately, this works fine; but if intermingled ...

Suppose \(\text{counter} \) is 3, and look at \(\text{counter:} = \text{counter} + 1 \) and \(\text{counter:} = \text{counter} - 1 \). These might compile into the following:

```
counter: = counter + 1             counter: = counter - 1
C1  r1: = counter;                P1  r2 : = counter;
C2  r1: = r1 + 1;                 P2  r2: = r2 - 1;
C3  counter: = r1;                P3  counter: = r2;
```

depending on how these sets of statements intermingle, \(\text{counter} \) could have one of three values:

```
P1 P2 C1 C2 P3 C3               counter = 4
P1 P2 C1 C2 C3 P3              counter = 6
P1 P2 P3 C1 C2 C3              counter = 5
```

Why? 2 processes manipulated \(\text{counter} \) simultaneously. Clearly, we need to ensure just one process does.
The Critical Section Problem and Its Solutions

Critical Section Problem
A critical section is a block of code that only one process at a time can execute; so, when one process is in its critical section, no other process may be in its critical section.
Problem: design a protocol to solve this problem.
Generic description of framework: Every solution will have the following layout:

entry section
critical section
exit section
remainder section

Requirements to be a Solution
1. Mutual exclusion; at most one process in the critical section at a time.
2. Progress; if no process in the critical section, and some wish to enter, then only processes not in remainder section can take part in deciding which one enters.
3. Bounded Wait; a bound on the number of times other processes are allowed to enter the critical section after a process asks to enter its critical section and before it is allowed to.
Assumption made implicitly: each process runs at nonzero speed, but no assumption is made as to relative speed.

Two-Process Solutions
We will use processes p0 and p1, also known as pi and pj, with either i = 0 and j = 1 or with i = 1 and j = 0. The current process is always pi; the other one, pj.

Analyses of Sample Solutions
Our goal is to learn how to analyze a proposed solution. The best way to do this is by examples:

Example 1.

```java
var turn: 0..1;  (* whose turn it is *)
while turn ≠ i do  ... entry section
  (* nothing *);
  ... critical section
  turn := j;  ... exit section
```
Is mutual exclusion satisfied? As turn can have only 1 value, it is.
As for progress, note the processes enter their critical section in alternate order; hence progress is not met.

Example 2.

```pascal
var inCS: array[0..1] of booleans := false;  (* who is in critical section *)
while inCS[j] do  ... entry section  (* nothing *)
  inCS[i] := true;  ... critical section
  inCS[j] := false;  ... exit section
```

Is mutual exclusion satisfied? Suppose pi and pj both execute the `while` statement at the same time. As both `inCS[i]` and `inCS[j]` are false, both proceed through, set `inCS[i]` and `inCS[j]` to true, and enter their critical section. So mutual exclusion is violated.

Example 3.

```pascal
var interested: array[0..1] of booleans := false;  (* who wants to enter critical section *)
interested[i] := true;  ... entry section
while interested[j] do  (* nothing *)
  ... critical section
  interested[j] := false;  ... exit section
```

Is mutual exclusion satisfied? The only way into the critical section is if `interested[j]` is false; but if a process is in the critical section, `interested[j]` must be true. Hence at most one process can be in the critical section at a time, proving mutual exclusion holds.

Is progress satisfied? Suppose both processes hit the `while` loop at the same time. Then they loop forever. So progress is not satisfied.

Example 4.

```pascal
var interested: array[0..1] of booleans := false;  (* who wants to enter critical section *)

  turn: 0..1;
  interested[i] := true;  ... entry section
  turn := j;
  while interested[j] and turn = j do  (* nothing *)
    ... critical section
    interested[j] := false;  ... exit section
```

Is mutual exclusion satisfied? Note first that pi enters its critical section only if `interested[j]` is false and `turn` is i. For both to be in the critical section, `interested[i]` and `interested[j]` are both true.
Both could not have passed through the \texttt{while} loop at the same time (as turn is i or j but not both), so one did the loop while the other did one of the preceding lines. Say pi does the preceding lines and pj is in the loop. After doing the first line in the entry section, $\text{interested}[i]$ and $\text{interested}[j]$ are both true, and turn is j, so pi stops at the \texttt{while} and the next time pj goes, it enters the critical section; in short, at most one process can be in the critical section. So mutual exclusion holds.

Are bounded wait and progress both satisfied? First, notice that pi is blocked from entering the critical section only if it is stuck at the while loop, which means that $\text{interested}[j]$ is true and turn is j. If pj is not in the entry or critical sections, $\text{interested}[j]$ is false and pi goes in. If pj is at the \texttt{while} statement in the entry section, turn is either i or j, and the process with index the same as turn will go in. Now, once pi leaves the critical section, $\text{interested}[i]$ is false and pj can go in (or vice versa). If pj resets $\text{interested}[j]$ is true, then turn will be set to i and pi goes in. This means that only the processes in the entry, exit, or critical sections affect which process goes in, giving progress. Further, at most one additional entry by pj will occur if both request entry at the same time, so bounded waiting holds.

Hence this is a solution to the critical section problem; in fact, it is Peterson's Solution.

\textbf{N-process Solution}

Lamport's Bakery Algorithm (see handout) is one solution.

Is mutual exclusion satisfied? Let Pi be in the critical section. If P_k ($k \neq i$) has chosen $\text{number}[k] \neq 0$, $\text{number}[i],i < \text{number}[k],k$. Now, suppose P_k trying to enter, and Pi is in the critical section. When P_k runs with $j = i$, it sees $\text{number}[i] \neq 0$ and $(\text{n}[i], i) < (\text{n}[k], k)$ and therefore loops.

Are bounded wait and progress satisfied? Yes, as processes enter the critical section on FIFO basis.

\textbf{Hardware Solutions}

The critical section problem is easier to solve using hardware instructions, for example the atomic test-and-set instruction:

\begin{verbatim}
function TaS(var Lock: boolean): boolean
begin
 TaS: = Lock;
 Lock = True;
end;
\end{verbatim}

which is used to solve the N-process problem (see handout)
All of the above solutions (software and hardware) have problems:
1. busy waiting; the CPU does nothing in such a way that no-one else can use it
2. complex, not easily generalizable; for example, Peterson's solution does not easily generalize to N processes.
To solve these, we can define other hardware constructs. For example:
semaphores

This is a non-negative integer variable S that can be operated on in 3 ways.

1. *initialization* operation sets initial value atomically:

 $S := n$;

2. *signal* or *V* operation increments value atomically:

 $S := S + 1$;

3. *wait* or *P* operation blocks until S is non-zero, then decrements value; the whole thing is atomic:

   ```
   while $S = 0$ do block;
   S := S - 1;
   ```

Mathematically, let:

- ns number of signals
- nw number of completed wait operations (i.e., not suspended)
- iv initial value
- vs value of semaphore

Then for a semaphore $mutex$, the definitions give:

$$vs(mutex) = iv(mutex) + ns(mutex) - nw(mutex)$$

but as $vs \geq 0$, we also have

$$nw(mutex) < ns(mutex) + iv(mutex)$$

Both of these are always true, and hence are *invariants*. So, for mutual exclusion:

$$P(mutex); (* \text{critical section} *) ; V(mutex);$$

If the initial value of $mutex$ is 1, then the second invariant gives

$$nw(mutex) < ns(mutex) + 1$$

meaning that at most 1 process will be in the critical section at a time (giving mutual exclusion).

2) Synchronization:

```
A   B
... ...
P(mutex)    V(mutex)
... ...
```

If the initial value of $mutex$ is 0, process A will block at $P(mutex)$ until process B reaches $V(mutex)$; and $nw(mutex) \leq ns(mutex)$.
example: Recall the precedence graph

The implementation is usually First-In-First-Out queues; the first process blocked is the first one allowed to continue.
Testing Synchronization Primitives

Bounded Buffer Problem
Processes communicate through a buffer of fixed length. The producer inserts items and the consumer extracts them.

Problem: prevent buffer overflow or underflow.

Assume:

\[
\begin{align*}
 n & \quad \text{size of buffer} \\
 d & \quad \text{number of items deposited} \\
 e & \quad \text{number of items extracted}
\end{align*}
\]

Obviously, \(0 \leq d - e \leq n\) must hold.

From the order of operations:

in the producer:

\[
\begin{align*}
 \text{ns}(\text{full}) & \leq d \leq \text{nw}(\text{empty})
\end{align*}
\]

in the consumer:

\[
\begin{align*}
 \text{ns}(\text{empty}) & \leq e \leq \text{nw}(\text{full})
\end{align*}
\]

Hence

\[
\begin{align*}
 d & \leq \text{nw}(\text{empty}) \leq \text{ns}(\text{empty}) + n \leq e + n \\
 e & \leq \text{nw}(\text{full}) \leq \text{ns}(\text{full}) \leq d
\end{align*}
\]

Combining, we have

\[
e \leq d \leq e + n
\]

Readers - Writers Problem
Here, a file is to be shared among several concurrent processes, each of which is only interested in reading (the readers) or writing (the writers).

Problem: to enforce Bernstein's conditions.

The nub is that writers need exclusive access to the file. This suggests two variants, based on priority of the writers:

The first readers-writers problem: Readers have priority. Hence even if a writer is waiting for the file, a new readers may start reading the file provided another reader is also currently reading the file. This means that writers may starve

The second readers-writers problem: Writers have priority. Hence once a writer is waiting for the file, no new readers may start reading.

A solution to the first problem is in the handout.

The Dining Philosophers Problem
Five philosophers are dining at a circular table. They have five plates (one in front of each philosopher) and five forks, one between each plate. They alternate between thinking and using both their right and left forks to eat.

Problem: prevent starvation and deadlock.

Example 1 of a Potential Solution:
Each philosopher picks up her left fork first:
var fork: array [0..4] of semaphore = 1,1,1,1,1
repeat (* philosopher i *)
 P(fork[i]);
 P(fork[i + 1 mod 5]);
 (* eat *)
 V(fork[i]);
 V(fork[i + 1 mod 5]);
 (* think *)
until false
This leads to deadlock.
Abstraction

Problem with Semaphores

The problem is similar to that of fork/join/quit. P and V are too low-level. Also, semaphores combine blocking with counting these are distinct functions, which could be kept separate. Finally, they are murder to debug; try typing a P for a V and then figure out where you did it!

Solution: build some higher level constructs

Abstract Datatypes

The theory of programming languages gives a technique to do this. A class is a module giving representation of an abstract data type

example: type stack = class
 var
 stack: array [1..100] of integer;
 top: integer;
 procedure entry push(x: integer);
 begin
 if (checkpush()) then
 begin
 stack[top] := x;
 top := top + 1;
 end;
 end;
 procedure entry pop(var x: integer);
 begin
 if (checkpop()) then
 begin
 x := stack[top];
 top := top - 1;
 end;
 end;
 function checkpush(): boolean;
 begin
 checkpush := top <=100;
 end;
 function checkpop() = boolean,
 begin
 checkpop := top > 1;
 end; (* initialitation *)
 begin
 top := 1;
 end;

Then you declare an instance of this type by

var calcsstack: stack;

The type is the template, or definition; the instance is a variable of that type.
Monitors (Hoare)

Monitors are defined like a class, but they guarantee mutual exclusion; only 1 process may be active in the monitor. So, when using one:

1. access to the encapsulated resource should be possible only via the monitor
2. procedures in the monitor are mutually exclusive; when 1 process is executing within the monitor, other processes calling procedures within the monitor are delayed until that process leaves the monitor

So far, these are similar to critical regions. But to synchronize, define condition variables and 2 operations:

- `wait` on a condition variable (\(x.wait\)) - block process, put it on queue associated with condition \(x\)
- `signal` on a condition variable (\(x.signal\)) - if any process is blocked on condition \(x\), unblock one of them; if not, ignore the signal.

Note that the `signal` operation is memoryless (that is, if no-one is blocked, the signal disappears and the next one to try to wait will `wait`); different than semaphores (not memoryless).

Problem with `signal` suppose P1 is blocked on \(x\), and P2 signals on \(x\). Since only one process can be in the monitor at a time, one must block until the other is done. Two methods are followed:

1. P2 waits until P1 either leaves monitor or waits for a condition (Hoare).
 - This gives simpler, more elegant proofs.
2. P1 waits until P2 either leaves monitor or waits for a condition (Lampson & Redell). The programming language Mesa uses this. One problem is that the “logical” condition for which P1 was waiting may no longer be true when P2 leaves monitor; hence under this scheme, the monitor must say

   ```
   while not B do x.wait;
   and not
   if not B do x.wait;
   ```

example: Binary semaphore with a monitor.

```plaintext
semaphore: monitor;
var busy: boolean;
notbusy: condition
procedure entry P;
begin
  if busy then
    notbusy.wait;
  busy: = true;
end;
procedure entry V;
begin
  busy: = false;
```
notbusy.signal;
end;
beg
 busy:= false;
end.

example: producers/consumers problem (see handout)
example: first readers-writers problem (see handout)

Implementation: Here we consider Hoare's. We must assure:
1. execution of procedures in the monitor is mutually exclusive;
2. wait blocks the current process on corresponding condition
3. if a process exits or is blocked, and other processes are waiting to enter the monitor, one must be selected; priority goes to those blocked after issuing a signal, then those waiting to get in go, then those blocked on a condition variable.
4. if a process issues a signal, it must determine if any process is waiting on the corresponding condition; if so, current process is suspended and a waiting one activated; else, the signaller continues.
See handout for how it is done.

Priority Waits
Recall that signals restart processes in FIFO order, but sometimes this is not good; for example, think of waiting for a specific time of day. Hence define priority wait as:

\[c.wait(p) \]

where \(p \) is an integer and \(c \) a condition variable. If more than one process waiting on \(c \) is signalled, the one with the lowest value of \(p \) resumes.
example: alarm clock (see handout).
Event Counters and Sequencers

These allow synchronization without mutual exclusion (but they can provide mutual exclusion too). There are two parts:

Event counters are non-decreasing integers beginning at 0. Three operations (here, E is an event counter):

- **advance(E)** $E := E + 1$ atomically; indicates an event of interest occurred
- **read(E)** return(E); so, if E is n, at least n advance(E) operations occurred
- **await(E,v)** block until E has value v so this continues only when at least v advance(E) operations occurred.

Sequencers also are non-decreasing integers beginning at 0. These are used to order events, and one operation only is defined (here, S is a sequencer):

- **ticket(S)**

 - olds := S;
 - $S := S + 1$;
 - return(oldS);

 executed atomically; this requires mutual exclusion so no two calls will return the same value.

Mutual exclusion:
- **await (E, ticket (S));**
- **advance(E);**

example: producer-consumer problem (see handout)
Shared Memory Synchronization

There are some cases where none of the above mechanisms are satisfactory:
1. Security considerations may prevent sharing memory
 example: each process must run in strict isolation, in its own logical space with all interactions under its own control; this is not possible with monitor, as any process with access to the monitor can get global data stored within the monitor.
2. It may not be possible to share memory
 example: in a distributed system, each processor may have its own local memory and so processes on different processors cannot share data.

In these cases a mechanism other than those based on shared memory must be used; these new schemes are called message-based synchronization schemes.

Interprocess Communication (IPC)

Two primitives:
send(p, msg) transfers message msg to process p; special (implementation-dependent) values of p can be used to indicate that the message goes to all processes; this is called broadcast.
receive(q, msg) obtains message msg from process q; special (implementation-dependent) values of q can be used to indicate that the message goes to all processes.

The answers to four basic questions characterize send/receive primitives:
1. Does the sender wait until its message is accepted by the recipient, or does it continue processing?
 • if the sender blocks, the send is called blocking or synchronous
 • if the sender may proceed while the message is being delivered, send is non-blocking or asynchronous
2. What happens when a receive call is issued, but there is no message waiting?
 • if the process waits for a message to arrive, the receive is called blocking or synchronous
 • if the process continues, the receive is called nonblocking or asynchronous

A related question is the size of the (system) queue used to hold messages in transit. This queue, associated with the connection or link between the two processes, has a capacity for a certain number of
messages; the capacity is a property of the link. There are three different types of implementations:
1. A zero capacity link: the link cannot have any messages waiting; the sender must wait until the recipient gets the message, or the message is lost. It is most useful when the process transmits the message from a buffer within the process (called *rendezvous*).
2. A bounded capacity link: If the capacity is n, then at most n messages can be stored in the associated queue. If the queue is not full, the message is copied into the queue. If it is full, the sender must wait (or the message will be lost).
3. An unbounded capacity link: any number of messages can be stored in the associated queue.

Must the sender specify exactly 1 recipient, or can messages be sent to any (or all) of a number of recipients?

Must the recipient specify exactly 1 sender, or can messages be accepted from any (or all) of a number of senders?

Naming
There are two types:
1. The sender or recipient is specified; called *explicit naming* or *direct communication*.
 Relevant properties:
 • the link between pairs of processes wanting to communicate is established automatically; the processes need to know each other's identity only.
 • each link is associated with exactly 2 processes.
 • between each pair of communicating processes, there is exactly one link
 • the link is bidirectional
 example: the producer/consumer problem (see handout)
 A variant of this scheme is that the sender specifies the recipient, but the recipient gets messages from any sender; on return of the receive call, the process argument in the call is set to the name of the sending process
 Problem: lack of modularity, as if a process changes its name, all references to it must also be changed.

2. Messages are sent to *mailboxes* or drop boxes; called *implicit naming* or *indirect communication*.
 Relevant properties:
 • there is a link between a pair of processes only if there is something shared (like a mailbox)
 • a link is associated with any number of processes
between each pair of communicating processes, there may be many links (specifically, 1 per mailbox)
• a link may be unidirectional or bidirectional
example: the producer/consumer problem (redo handout)
Problem: If two processes do a receive on a mailbox at the same time, who gets the message? Three possibilities:
 1. Each link is associated with exactly 2 processes so the problem should never arise.
 2. Only 1 process at a time may do a receive on a particular mailbox; in this case, the mailbox is called a port.
 3. The system selects which process (but not both of them!) gets the message.
How do you create a mailbox? It can be done:
• within the process, by declaring the mailbox (like you declare a variable to create it); that process gets all messages sent to the mailbox, and when the process dies, the mailbox goes away.
• by the operating system, which provides system calls to create and delete a mailbox. Usually the ability to receive messages from a particular mailbox can be passed to another process via system calls. May require garbage collection.

Other issues include:
• communications delay; one solution is to send until a reply (acknowledgement) is received.
 example: Toth, internet higher level protocols (SMTP, TCP)
• process termination before message processed
 1. if a recipient process P1 is waiting for a message from a terminated process P2 using a blocking receive, P1 is blocked forever.
 2. if a sender process P1 sends a message to a terminated process P2 using a blocking send on a zero-capacity link, P1 is blocked forever.
In both cases, the solution is to notify P1 that P2 has terminated, or terminate P1
• messages lost in transfer
 1. The operating system may be responsible for detecting this and retransmitting the message or notifying the sender.
 2. The sender may detect this; it can resend the message. Timeouts are used to detect this; one problem is they may be too short, so messages are unnecessarily retransmitted.
• messages may be garbled or altered in transit
 These can be detected by using message integrity codes such as checksums or CRCs.
Remote Procedure Calls (RPC)

The send/receive mechanism has the same problems as semaphores; they are too low-level, so the user must use them like P and V and abandon the idea of procedures. Remote procedure calling provides this procedural interface.

Programmer view
A remote procedure call is just like a regular procedure call, except the procedure is in a separate address space and doesn't share global variables.

Implementation view
Each remote procedure needs a separate process; this process can be created by the call to the procedure, or it can be a permanent process (below, called an RP_guard) that reads parameters, runs the remote procedure, and returns its result using send and receive primitives:

\[
\begin{align*}
\text{caller process} & \quad \text{RP_guard process} \\
\text{send(RP_guard, parameters)} & \quad \text{receive(caller, parameters)} \\
\text{RP(parameters)} & \\
\text{receive(RP_guard, results)} & \quad \text{send(caller, results)}
\end{align*}
\]

Example: the programming language ADA™

The accept statement designates a segment of code as a remote procedure:

\[
\text{accept name(formal_parameter_list) do proc-body end}
\]

To call, the caller uses

\[
\text{name(actual_parameters)}
\]

- If the caller issues a call before the process containing the definition of the called function hits the corresponding accept, the caller blocks. When the process with the called function hits the accept, it executes the statement body, and sends the results to the caller. Then both go on.
- If the process containing the definition of the function hits accept first, it blocks until the caller issues the corresponding remote
procedure call; it then proceeds, sends the result to the caller, and goes on.
Thus the accept mechanism is like blocking receive with explicit naming.
We would like to wait for any of several possible requests so that the remote procedure could be shared by many remote procedures (that is, one RP_guard procedure that will call on many different functions). The select statement does this; it associates with each accept a Boolean condition. If the Boolean condition is false when the select is executed, the corresponding accept cannot be done.

```
select  [when B1:] accept E1(…) do S1 end
       or when B2:] accept E2(…) do S2 end
       ...
       or [when Bn:] accept En(…) do Sn end
   else    R
end;
```

If the else is omitted, and none of the Booleans are true, an error is generated. If more than one Boolean is true, the systems is assumed to choose among the possibilities according to a fair internal policy.

What characterizes a “fair internal policy?” Which process is given the CPU next? This is the province of schedulers.