21

22

23

24

25

26

27

28

29

30

31

33

34

ECS 150, Operating Systems

Spring Quarter 2022

Process Information for UNIX V6

Process Table Entry

This is the process table entry structure. There can be NPROC processes, so the table is of static size. This entry is
always in core, even if the process is not running or is swapped out.

struct proc

{
char p-stat;
char p-flag;
char p-pri;
char p-sig;
char p-uid;

char p-time;
char p-cpu;
char p-nice;
int p-ttyp;
int p-pid;
int p-ppid;
int p-addr;
int p-size;
int p-wchan;
int #p_textp;

} proc[NPROC];

/% stat codes =/
#define SSLEEP 1
#define SWAIT 2
#define SRUN 3
#define SIDL 4
#define SZOMB 5
#define SSTOP 6

/+ flag codes =/

#define SLOAD 01
#define SSYS 02
#define SLOCK 04
#define SSWAP 010
#define STRC 020
#define SWIED 040

/%
/%
/%
/%
/%
/%
/%
IES
/S
/%
/%
/%
/%
/%
/%

/%
/S
/%
/%
/%
/%

/%
/%
/%
/%
/%
[*

process status =/

process status attributes

priority , negative is
signal number sent to

user id, used to direct
resident time for scheduling =/

cpu usage for scheduling

nice for scheduling =/

controlling tty =/
unique process id =/
process id of parent

address of swappable image =/

size of swappable image (%64 bytes)
event process is awaiting
pointer to text structure

sleeping on high priority
sleeping on low priority

running =/

intermediate state in process
intermediate state in process

process being traced

in core x/
scheduling process =/

®/

process cannot be swapped =/
process is being swapped out =/
process is being traced

another tracing flag

%/

%/

®/
high =/
this process =/
tty signals =/
®/
#/
®/
*/
%/
*/
*/
creation

termination

Version of March 31, 2022 at 12:00am

Page 1 of

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

ECS 150, Operating Systems

Spring Quarter 2022

Other Part of the Process Information

This is the remainder of the information about the process. It is kept in another area associated with the process. It

need not stay in core when the process is swapped out to disk.

®/

struct user

{
int u_rsav|[2]; /+ save r5,r6 when exchanging stacks =/
int u_fsav[25]; /+ save fp registers =/

/+ rsav and fsav must be first in structure
char u_segflg; /+ flag for I0; user or kernel space =/
char u_error; /+ return error code */
char u_uid; /+ effective user id =/
char u_gid; /+ effective group id =/
char u_ruid ; /%« real user id =/
char u_rgid; /+ real group id =/
int u_procp; /% pointer to proc structure =/
char +u_base; /+ base address for IO =/
char xu_count ; /+ bytes remaining for IO =/
char xu_offset[2]; /% offset in file for IO =/
int xu_cdir; /+ pointer to inode of current directory =/
char u_dbuf[DIRSIZ]; /% current pathname component =/
char xu_dirp; /% current pointer to inode =/
struct { /+ current directory entry s/

int u_ino; /% inode number =/

char u_name[DIRSIZ];/+ name of directory =/
} u_dent;
int xu_pdir; /+ inode of parent directory of dirp =/
int u_uisa[l6]; /+ prototype of segmentation addresses =/
int u_uisd[16]; /+ prototype of segmentation descriptors =/
int u_ofile [NOFILE];/+ pointers to file structures of open files
int u_arg[5]; /% arguments to current system call =/
int u_tsize ; /% text size (%64) =*/
int u_dsize; /% data size (%64) =/
int u_ssize; /% stack size (%64) =x/
int u_sep; /+ flag for I and D separation =/
int u_gsav[2]; /+ label variable for quits and interrupts =/
int u_ssav[2]; /+ label variable for swapping =/
int u_signal [NSIG]; /% disposition of signals =/
int u_utime ; /+ this process user time x/
int u_stime ; /+ this process system time s/
int u_cutime [2]; /% sum of childs’ utimes =/
int u_cstime [2]; /% sum of childs’ stimes =/
int xu_ar0 ; /+ address of users saved RO =/
int u_prof [4]; /+ profile arguments =/
char u_intflg; /+ catch intr from sys =/

/+ kernel stack per user

* extends from u + USIZEx64

% backward not to reach here

*/

Version of March 31, 2022 at 12:00am

Page 2 of

