
Context Switching and
Process Scheduling

April 4, 2022 ECS 150, Operating Systems 1

Context Switch

• PC, processor status word, registers, pushed onto a small kernel stack
allocated for the process
• Jump to routine in kernel indicated by trap table/interrupt vector
• Kernel services the trap/interrupt
• Kernel selects the next process to run
• It may be a different one

• Kernel pops the information from the kernel stack and restores them
to the registers, processor status word, and PC
• PC popped last, as when it is restored, process restarts

April 4, 2022 ECS 150, Operating Systems 2

Context Switch Example

• Example is from XINU on an LSI-11 system
• See the handout “Context Switch Routine for XINU System on LSI-11”
• LSI-11 has same instruction set as PDP-11

• Modern systems may have more complex entries, but the idea is the
same

April 4, 2022 ECS 150, Operating Systems 3

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user
mode)

initialize interrupt/trap vectors

remember address of syscall handler

create entry for process in process table

allocate memory for program

load program into memory

setup stack (including arguments,
environment, etc.)

fill kernel stack with registers, PC

return-from-trap

restore registers from kernel stack

April 4, 2022 ECS 150, Operating Systems 4

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user mode)

change to user mode

jump to main()

run main()

system call causes trap into OS

save registers to kernel stack

change to kernel mode

jump to trap handler

handle trap, ie system call

return-from-trap

restore registers from kernel stack

April 4, 2022 ECS 150, Operating Systems 5

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user mode)

change to user mode

jump to PC after trap

return from main()

causes trap

free memory of process

delete process table entry

April 4, 2022 ECS 150, Operating Systems 6

Process Scheduling

• Depends on what you want from the system
• Metrics are:
• Throughput: get the most work done in a given time
• Turnaround: complete processes as soon as possible after submission
• Response: minimize the time between submission and first response; does

not include time to output the response
• Resource use: keep each type of resource assigned to some process as much

as possible, but avoid waiting too long for certain resources.
• Waiting time: minimize the amount of time the process sits in the ready

queue
• Consistency: treat processes with given characteristics in a predictable

manner that doesn't vary greatly over time.

April 4, 2022 ECS 150, Operating Systems 7

Scheduling

• Many attributes affect this:
• priority
• anticipated resource need (including running time)
• running time, resources used so far
• interactive/non-interactive
• frequency of I/O requests
• time spent waiting for service

April 4, 2022 ECS 150, Operating Systems 8

Comparing Scheduling Algorithms

Job Arrival time Service time

A 0 10

B 1 29

C 2 3

D 3 7

E 4 12

April 4, 2022 ECS 150, Operating Systems 9

• Waiting time: time the process is present and not running
W = T - service time

• Response ratio: the factor by which the processing rate is reduced,
from the user's point of view: R = T / service time

Measures:
• Turnaround time: time the

process is present in the
system
T = finish time – arrival time

Types of Scheduling Algorithms

• Decision mode:
• Non-preemptive: a process runs until it blocks or completes; at no time during its run

will the operating system replace it with another job
• Preemptive: the operating system can interrupt the currently running process to start

another one
• Priority function: a mathematical function that assigns a priority to the

process
• Process with the highest (numerical) priority goes next
• Function usually involves the service time so far a, the real time spent in the system

so far r, and the total required service time t
• Arbitration rule: if two processes have the same priority, this rule states

how one of them is selected to run.

April 4, 2022 ECS 150, Operating Systems 10

Process (Job) Scheduling

• First In, First Out (FIFO)
• Shortest Job (Process) Next/First (SJN, SJF, SPN, SPF)
• Highest Response Ratio Next (HRRN)
• Round Robin (RR)
• Multi-Level Feedback Queue (MLFQ)

April 4, 2022 ECS 150, Operating Systems 11

First Come First Serve

Process Service time Arrival time Start Finish T W R

A 10 0 0 10 10 0 1.0

B 29 1 10 39 38 9 1.3

C 3 2 39 42 40 37 13.3

D 7 3 42 49 46 39 6.6

E 12 4 49 61 57 45 4.8

mean 38.2 26 5.4

April 4, 2022 ECS 150, Operating Systems 12

• Decision mode: non-preemptive
• Priority function: p(a, r, t) = r
• Arbitration rule: random

As a Graph

April 4, 2022 ECS 150, Operating Systems 13

A B C D E

0 10 39 42 49 61

Problem

• Sensitive to order jobs arrive
• Example:

April 4, 2022 ECS 150, Operating Systems 14

Process Service time Arrival time Start Finish T W R

A’ 1000 0 0 1000 1000 0 1.0

B’ 1 1 1000 1001 1000 999 1000.0

Process Service time Arrival time Start Finish T W R

B’ 1 0 0 1 1 0 1.0

A’ 1000 1 1 1001 1000 1 1.0

But:

Shortest Process Next

Process Service time Arrival time Start Finish T W R

A 10 0 0 10 10 0 1.0

B 29 1 32 61 60 31 2.1

C 3 2 10 13 11 8 3.7

D 7 3 13 20 17 39 2.4

E 12 4 20 32 28 10 2.3

mean 25.2 17.6 2.3

April 4, 2022 ECS 150, Operating Systems 15

• Decision mode: non-preemptive
• Priority function: p(a, r, t) = –t
• Arbitration rule: chronological or random

As a Graph

April 4, 2022 ECS 150, Operating Systems 16

A BC D E

0 13 20 32 6110

Shortest Process Next

• SPN gives the smallest average turnaround time out of all non-
preemptive priority functions
• SPN better than FCFS for short jobs, but long jobs may have toi wait

for some time for service

April 4, 2022 ECS 150, Operating Systems 17

Problem

SPN needs to know service times into the future so it can run the
process with the shortest next CPU burst. To choose the next process to
run, it can use a number of different ways:
• Most accurate is to run all ready processes, time the CPU bursts, and

then schedule them (impractical)
• Characterize each process as CPU-bound or I/O-bound, and specify

for each an “average service time needed” based upon timing
processes over a period of time and averaging. These characteristics
might change over a period of time; that is, a process might be CPU-
bound for a time, then I/O-bound, then CPU-bound, etc.

April 4, 2022 ECS 150, Operating Systems 18

Problem

• Compute the expected time of the next CPU-burst as an exponential
average of previous CPU-bursts of the process. Let tn be the length of
the n-th CPU burst, and tinit the initial estimate.

tn+1 = atn + (1–a)tinit
where a is a parameter indicating how much to count past history
(usually chosen around 0.5)
• a = 1: the estimate is simply the length of the last CPU burst
• a = 0: the estimate is the initial estimate

April 4, 2022 ECS 150, Operating Systems 19

Shortest Remaining Time Next

Process Service time Arrival time Start Finish T W R

A 10 0 0, 12 2, 20 20 10 2.0

B 29 1 32 61 60 31 2.1

C 3 2 2 5 3 0 1.0

D 7 3 5 12 9 2 1.3

E 12 4 20 32 28 16 2.3

mean 24 11.8 1.74

April 4, 2022 ECS 150, Operating Systems 20

• Decision mode: preemptive
• Priority function: p(a, r, t) = a–t
• Arbitration rule: chronological or random

As a Graph

April 4, 2022 ECS 150, Operating Systems 21

A BC D E

0 5 12 32 612

A

20

Highest Response Ratio Next

Process Service time Arrival time Start Finish T W R

A 10 0 0 10 10 0 1.0

B 29 1 32 61 60 31 2.1

C 3 2 10 13 11 8 3.7

D 7 3 13 20 17 10 2.4

E 12 4 20 32 28 16 2.3

mean 25.2 13 2.3

April 4, 2022 ECS 150, Operating Systems 22

• Decision mode: non-preemptive
• Priority function: p(a, r, t) = a/c
• Arbitration rule: FIFO or random

Why?

Time A B C D E which runs

0 A

10 (29+9)/29=1.3 (3+8)/3=3.7 (7+7)/7=2.0 (12+6)/12=1.5 C

13 (29+12)/29=1.4 (7+10)/7=2.4 (12+9)/12=1.8 D

20 (29+19)/29=1.7 (12+16)/12=2.3 E

E (29+31)/29=2.1 B

April 4, 2022 ECS 150, Operating Systems 23

• To decide which process to run, compute:
(estimated service time + waiting time) / estimated service time

• Idea: get mean response ration low, so if a process has a high response
ratio, it should be run at once to reduce mean

Round Robin

• Designed especially for time sharing
• Uses quantum, typically between 1/60 sec and 1 sec

• Processes kept in a queue
• As each process is preempted, it moves to the rear of the queue
• All new arrivals come in at the rear of the queue

April 4, 2022 ECS 150, Operating Systems 24

Example

• Using our previous jobs with a quantum of 5:

April 4, 2022 ECS 150, Operating Systems 25

time 0 5 10 13 18 23 28 33 35 40 45 47 52 57 61

proc A B C D E A B D E B E B B B

rem 5 24 0 2 7 0 19 0 2 14 0 9 4 0

Variants

• Round Robin, but adjust quantum periodically.
• example: after every process switch, the quantum becomes q/n, where n is the

number of processes in the ready list
• Few ready processes means that each gets a long quantum, minimizing process

switches.
• Lots of ready processes means that this algorithm gives more processes a shot at the

CPU over a fixed period of time, at the price of more process switching
• Processes needing a small amount of CPU time get a quantum fairly soon, and hence
may finish sooner.

• Round Robin, but give the current process an extra quantum when a new
process arrives
• This reduces process switching in proportion to the number of processes arriving.

April 4, 2022 ECS 150, Operating Systems 26

