
Announcements

• Extra Office Hour: tomorrow at 11am

• Slides for today are posted
• Slides from Friday are posted
• Homework is due April 13, not April 11
• This includes extra credit

• All graduating seniors should have received a PTA for the new section. 
If you are a graduating senior and did not, please contact the 
Undergraduate Advisors immediately!!!!!
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Interprocess Synchronization 
and Communication
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Solutions in Software

• Last class’ solution was Peterson’s Solution
• Lamport’s bakery algorithm solves the n-process problem
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Lamport’s Bakery Algorithm

var choosing: shared array[0..n-1] of boolean; 
number: shared array[0..n-1] of integer; 
... 

repeat
choosing[i] <- true; / ... eEntry section
number[i] <- max(number[0],number[1],...,number[n-1]) + 1; 
choosing[i] := false;
for j := 0 to n-1 do begin 

while choosing[j] do 
(* nothing *); 

while number[j] ≠ 0 and (number[j], j) < (number[i],i) do 
(* nothing *); 

end;
/ ... critical section

number[i] := 0; / ... exit section
until false; 
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Explanation

• choosing[i]: true if process i is choosing a number
• number[i]: number that process i will use to enter the critical section; 

0 if process i is not trying to enter its critical section
Entry section:
• Process i signals it is choosing a number
• Process i tries to get a unique number 
• May not happen due to race

• Process i indicates it is done
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Explanation

Which process goes in: 
• Process i waits until it has the lowest number of all the processes 

waiting to enter the critical section. 
• If two processes have the same number, the one with the smaller name (like i) 

goes in
• If another process is choosing a number when process i tries to look at it, 

process i waits until it has done so before looking. 

Exit section
• Process i no longer interested in entering its critical section, so it sets 

number[i] to 0. 
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Proof It Is a Solution

• Mutual exclusion:  Suppose process i is in critical section. Some other 
process k (k ≠ i) gets number[k] ≠ 0. Assume i < k; then 

(number[i],i) < (number[k],k). 
Suppose process k wants to enter the critical section, and process i is 
in the critical section. When process k is in the for loop, and j = i, then 
number[i] ≠ 0 and (number[i],i) < (number[k],k), so it loops in second 
while statement

• Are bounded wait and progress satisfied? Yes, as processes enter the 
critical section on FIFO basis. 
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Hardware Indivisible Test-and-Set Instruction

• This is atomic, and cannot be interrupted:
function TaS(var Lock: boolean): boolean
begin 

TaS: = Lock; 
Lock = True; 

end; 
• It sets Lock to true and returns the previous value of Lock
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Test-and-Set n Process Solution: Variables

var waiting: shared array [0..n-1] of Boolean <- false; 
Lock: shared Boolean <- false; 
j: 0..n-1; 
key: boolean; 

• Waiting, Lock are shared by all n processes
• j, key are local variables
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Test-and-Set n Process Solution: Entry Section

repeat (* process Pi *) 
waiting[i] := true;
key := true;
while waiting[i] and key do 

key := TaS(Lock); 
waiting[i] := false; 

• Process i indicates it wants to go into critical section
• If Lock is true, then key will be true and process i loops at the while

statement
• When it can enter key is false, so it resets waiting[i] and enters. 

Note the TaS(Lock) that sets key to false also sets Lock to true
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Test-and-Set n Process Solution: Exit Section

j := i + 1 mod n;
while (j <> i) and not waiting[j] do 

j := j + 1 mod n; 
if j = i then Lock := false 
else waiting[j] := false; 

until false;

• Process i exits and must choose who goes next
• If one (process j) is waiting, process i lets it proceed by setting 

waiting[j] to true; note Lock remains true.
• If none are waiting, Lock is set to false
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Problems of All These

• Busy waiting; the CPU does nothing in such a way that no-one else 
can use it while the process is waiting
• Not easily generalizable
• For example, Peterson's solution does not easily generalize to n processes 

• So look for other solutions . . . 
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Semaphores

• Non-negative integer variable sem that has 3 allowed operations:
• Initialization: initial value set atomically, as in

sem <- n
• signal: increment value of sem by 1, as in

sem <- sem + 1
• wait: block until value of sem is non-zero; then decrement value by 1, as in

while sem = 0 do block
sem <- sem – 1
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Blocking

• Each semaphore has an associated blocking (or waiting) queue
• When a process blocks, it goes into a queue
• When semaphore is non-zero, first process in queue is moved to the 

ready queue
• Processes normally are removed from the queue in FIFO order
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Example
S1;
parbegin

begin S2; signal(a); signal(b); end;
begin wait(a); S3; signal( c); end;
begin wait(b); S4; signal(d); end;
begin S5; signal( e); end;
begin wait(d); wait( e); S6; signal(f); end;
begin S7; signal(g); end;
begin wait( c); wait(f); wait(g); S8; end;

parend;
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Semaphore Solution to Critical Section

• Initialize semaphore (call it mutex) to 1
• Then wait at the beginning of the critical section
• On exit, signal
semaphore mutex <- 1;

repeat
wait(mutex);
// critical section
signal(mutex);

until false;

April 11, 2022 ECS 150, Operating Systems 16



Process Synchronization Using Semaphores

Process 1

repeat
…
wait(mutex);
…

until false;

Process 2
repeat

…
signal(mutex);
…

until false;
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Producers-Consumers Problem
• Initialize full to 0
• Initialize empty to n (size of buffer)
• Initialize mutex to 1 – used to enforce mutual exclusion for access to 

the buffer
• Producer:

wait(empty); wait(mutex); item into buffer; signal(mutex); signal(full)
• Consumer:

wait(full); wait(mutex); item from buffer; signal(mutex); signal(empty)
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Demonstration

• Suppose empty is n, meaning the buffer is empty
• Consumer wants an item, but blocks at wait(full)
• Producer wants to produce item, so at wait(empty), it decrements empty, 

puts item into buffer, and signals full to indicate there is an item in buffer
• Now, if buffer is full, empty is 0 and full is n
• Producer wants to produce an item, but has to wait for buffer to have an 

empty spot; so it blocks on empty
• When consumer wants to take an item, at wait(full) it decrements full, 

consumes the item, and signals empty to indicate there is an empty space 
in buffer
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Readers-Writers Problem

• Processes share a file
• Some processes want to read it (the readers)
• Others want to write it (the writers)
• Rules:
• Any number of readers can access the file simultaneously
• When a writer is accessing the file, no other process (reader or writer) can 

access the file
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Versions

• First version: readers have priority
• Even if a writer wants to access the file, it must wait until all readers are 

finished with the file and no readers want access to the file
• Note: writers may never be able to access the file (said as “writers may 

starve”)

• Second version: writers have priority
• Once a writer wants access to the file, no readers may obtain access
• Any readers with access continue to have access
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Demonstration (First Readers-Writers)

• Reader wants to read the file
• Sets mutual exclusion
• Adds that another reader wants to go in
• Release mutual exclusion
• If no other readers in critical section, wait for any writers
• If other readers in critical section, or no writers, enter critical section
• On exit, set mutual exclusion
• Decrement number of readers; if last one, signal any writers they can proceed
• Release mutual exclusion

• Summary
• Add 1 to the number of readers in, or wanting to enter, critical section
• If other readers in critical section, or no writers, enter critical section; otherwise, wait
• On exit, subtract 1 from the number of readers in or wanting to enter
• If no more readers, signal any writers
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Demonstration (First Readers-Writers)

• Writer wants to write the file
• Block until no readers and no other writers are in the critical section
• Set mutual exclusion for the critical section
• Enter
• Release mutual exclusion

• Summary
• Block until no other process is in the critical section
• Enter the critical section
• Unblock any waiting processes

• Note: mutual exclusion for critical section is not the same as for 
incrementing or decrementing the number of readers wanting to enter the 
critical section
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Dining Philosophers Problem

• Five philosophers are dining at a circular table
• There are five plate, one in front of each philosopher
• There are five forks, one between each plate
• Philosophers alternate between thinking and using both their right 

and left forks to eat
• Problem: prevent starvation and deadlock
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Possible Solution

• Each philosopher picks the fork on their left
var fork: array [0..4] of semaphore: = 1,1,1,1,1
repeat (* philosopher i *) 

wait(fork[i]);
wait(fork[(i + 1) mod 5]); 
(* eat *)
signal(fork[i]); 
signal(fork[(i + 1) mod 5]);
(* think *) 

until false 
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Do You See the Problem?

• Suppose all philosophers want to eat
• Each picks up their left fork (wait(fork[i]))
• All now want to pick up their right fork (wait(fork[(i + 1) 
mod 5]))
• Oops . . . All right forks are the left forks of the philosophers to the 

right
• So all philosophers wait until the one to their right begins to think
• . . . Deadlock!
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Problem

• Like fork/join/quit, semaphores are too low level
• Combine blocking with counting
• Really two separate operations, and should be treated as such

• Hard to debug
• Easy to make mistakes
• Think of typing wait when you meant to type signal
• Original name for wait (P), signal (V) even easier to mistype

• P from the Dutch passering (“passing”)
• V from the Dutch verhogen (“increase”)
• Taken from railroad signals
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