Announcements

e Extra Office Hour: tomorrow at 11am

e Slides for today are posted
e Slides from Friday are posted

* Homework is due April 13, not April 11
e This includes extra credit

* All graduating seniors should have received a PTA for the new section.
If you are a graduating senior and did not, please contact the

Interprocess Synchronization
and Communication

Solutions in Software

* Last class’ solution was Peterson’s Solution
* Lamport’s bakery algorithm solves the n-process problem

Lamport’s Bakery Algorithm

var choosing: shared array[0..n-1] of boolean;
number: shared array[0..n-1] of integer;

repeat
choosing[i] <- true; / ... eEntry section
number[i] <- max(number[0],number[l],...,number[n-1]) + 1;
choosing[i] := false;
for j := 0 to n-1 do begin
while choosing[j] do
(* nothing *);
while number[j] # 0 and (number[j], Jj) < (number[i],i) do
(* nothing *);
end;
/ ... critical section
number[i] := 0; / ... exit section

until false;

Explanation

* choosingli]: true if process i is choosing a number

* numberli]: number that process i will use to enter the critical section;
O if process i is not trying to enter its critical section

Entry section:
* Process i signals it is choosing a number

* Process i tries to get a unique number
* May not happen due to race

* Process i indicates it is done

Explanation

Which process goes in:

* Process i waits until it has the lowest number of all the processes
waiting to enter the critical section.

* If two processes have the same number, the one with the smaller name (like /)
goes in

* |f another process is choosing a number when process i tries to look at it,
process i waits until it has done so before looking.

Exit section

* Process i no longer interested in entering its critical section, so it sets
number]i] to O.

Proof It Is a Solution

* Mutual exclusion: Suppose process i is in critical section. Some other
process k (k # i) gets number[k] # 0. Assume i < k; then

(humberlil,i) < (humberl[k],k).

Suppose process k wants to enter the critical section, and process i is
in the critical section. When process k is in the for loop, and j =/, then
number[i] # 0 and (numberli],i) < (numberl[k],k), so it loops in second
while statement

* Are bounded wait and progress satisfied? Yes, as processes enter the
critical section on FIFO basis.

Hardware Indivisible Test-and-Set Instruction

* This is atomic, and cannot be interrupted:
function TaS(var Lock: boolean): boolean

begin
TaS: = Lock;
Lock = True;
end;

* It sets Lock to true and returns the previous value of Lock

Test-and-Set n Process Solution: Variables

var waiting: shared array [0..n-1] of Boolean <- false;
Lock: shared Boolean <- false;
j: 0..n-1;
key: boolean;

* Waiting, Lock are shared by all n processes
* j, key are local variables

Test-and-Set n Process Solution: Entry Section

repeat (* process Pi *)
waiting[i] := true;
key := true;
while waiting[i] and key do
key := TaS(Lock);
waiting[i] := false;
* Process iindicates it wants to go into critical section
* |f Lock is true, then key will be true and process i loops at the while
statement
* When it can enter key is false, so it resets waiting[i] and enters.

Note the TaS(Lock) that sets key to false also sets Lock to true

Test-and-Set n Process Solution

j := i + 1 mod n;

while (jJ <> 1) and not waiting[]j] do

j := j + 1 mod n;
if Jj = 1 then Lock := false
else waiting[]] := false;
until false;

* Process i exits and must choose who goes next

 Exit Section

* If one (process j) is waiting, process i lets it proceed by setting

waiting|[j] to true; note Lock remains true.

* If none are waiting, Lock is set to false

Problems of All These

* Busy waiting; the CPU does nothing in such a way that no-one else
can use it while the process is waiting

* Not easily generalizable
* For example, Peterson's solution does not easily generalize to n processes

* So look for other solutions . . .

Semaphores

* Non-negative integer variable sem that has 3 allowed operations:

* Initialization: initial value set atomically, as in
sem<-n

* signal: increment value of sem by 1, as in
sem<-sem+1

* wait: block until value of sem is non-zero; then decrement value by 1, as in
while sem = 0 do block
sem<-sem-1

Blocking

e Each semaphore has an associated blocking (or waiting) queue
* When a process blocks, it goes into a queue

* When semaphore is non-zero, first process in queue is moved to the
ready queue

* Processes normally are removed from the queue in FIFO order

Example
S1;

parbegin

oegin S2; signal(a); signal(b); end;

oegin wait(a); S3; signal(c); end;

oegin wait(b); S4; signal(d); end;

oegin S5; signal(e); end;

oegin wait(d); wait(e); S6; signal(f); end;
oegin S7; signal(g); end,;

egin wait(c); wait(f); wait(g); S8; end;
parend;

Semaphore Solution to Critical Section

* |nitialize semaphore (call it mutex) to 1

* Then wait at the beginning of the critical section
* On exit, signal

semaphore mutex <- 1;

repeat
walit (mutex);
// critical section
signal (mutex);
until false;

Process Synchronization Using Semaphores

semaphore mutex <- 0;

Process 1 Process 2

repeat repeat
walt (mutex); signal (mutex) ;

until false; until false;

Producers-Consumers Problem

* Initialize fullto O
* Initialize empty to n (size of buffer)

* Initialize mutex to 1 — used to enforce mutual exclusion for access to
the buffer

* Producer:
wait(empty); wait(mutex); item into buffer; signal(mutex); signal(full)
* Consumer:

wait(full); wait(mutex); item from buffer; signal(mutex); signal(empty)

Demonstration

* Suppose empty is n, meaning the buffer is empty
* Consumer wants an item, but blocks at wait(full)

* Producer wants to produce item, so at wait(empty), it decrements empty,
puts item into buffer, and signals full to indicate there is an item in buffer

* Now, if buffer is full, empty is 0 and full is n

* Producer wants to produce an item, but has to wait for buffer to have an
empty spot; so it blocks on empty

* When consumer wants to take an item, at wait(full) it decrements full,
consumes the item, and signals empty to indicate there is an empty space
in buffer

Readers-Writers Problem

* Processes share a file
* Some processes want to read it (the readers)
e Others want to write it (the writers)

* Rules:

* Any number of readers can access the file simultaneously

 When a writer is accessing the file, no other process (reader or writer) can
access the file

Versions

* First version: readers have priority

* Even if a writer wants to access the file, it must wait until all readers are
finished with the file and no readers want access to the file

* Note: writers may never be able to access the file (said as “writers may
starve”)

e Second version: writers have priority
* Once a writer wants access to the file, no readers may obtain access
* Any readers with access continue to have access

Demonstration (First Readers-Writers)

* Reader wants to read the file
* Sets mutual exclusion

* Adds that another reader wants to go in
* Release mutual exclusion

* If no other readers in critical section, wait for any writers
* |f other readers in critical section, or no writers, enter critical section
* On exit, set mutual exclusion

* Decrement number of readers; if last one, signal any writers they can proceed
e Release mutual exclusion

* Summary
* Add 1 to the number of readers in, or wanting to enter, critical section
* |f other readers in critical section, or no writers, enter critical section; otherwise, wait
* On exit, subtract 1 from the number of readers in or wanting to enter
* If no more readers, signal any writers

Demonstration (First Readers-Writers)

* Writer wants to write the file
* Block until no readers and no other writers are in the critical section
e Set mutual exclusion for the critical section
* Enter
* Release mutual exclusion

* Summary
* Block until no other process is in the critical section
* Enter the critical section
* Unblock any waiting processes

 Note: mutual exclusion for critical section is not the same as for
incrementing or decrementing the number of readers wanting to enter the
critical section

Dining Philosophers Problem

* Five philosophers are dining at a circular table
* There are five plate, one in front of each philosopher
* There are five forks, one between each plate

* Philosophers alternate between thinking and using both their right
and left forks to eat

* Problem: prevent starvation and deadlock

Possible Solution

* Each philosopher picks the fork on their left

var fork: array [0..4] of semaphore:

repeat (* philosopher 1 *)

wait(fork[1]);
wait(fork[(i + 1) mod 5]);

(* eat *)
signal (fork[1]);
signal(fork[(i + 1) mod 5]);
(* think *)

until false

=1,1,1,1,1

Do You See the Problem?

e Suppose all philosophers want to eat
* Each picks up their left fork (wait (fork[i]))

* All now want to pick up their right fork (wait (fork[(i + 1)
mod 5]))

e Qops ... Allright forks are the left forks of the philosophers to the
right

* So all philosophers wait until the one to their right begins to think
* ...Deadlock!

Problem

e Like fork/join/quit, semaphores are too low level

* Combine blocking with counting
* Really two separate operations, and should be treated as such

* Hard to debug

* Easy to make mistakes
* Think of typing wait when you meant to type signal

e Original name for wait (P), signal (V) even easier to mistype
* P from the Dutch passering (“passing”)
* V from the Dutch verhogen (“increase”
* Taken from railroad signals

