
Announcements

• Extra Office Hour: tomorrow at 11am

• Slides for today are posted
• Slides from Friday are posted
• Homework is due April 13, not April 11
• This includes extra credit

• All graduating seniors should have received a PTA for the new section.
If you are a graduating senior and did not, please contact the
Undergraduate Advisors immediately!!!!!

April 11, 2022 ECS 150, Operating Systems 1

Interprocess Synchronization
and Communication

April 11, 2022 ECS 150, Operating Systems 2

Solutions in Software

• Last class’ solution was Peterson’s Solution
• Lamport’s bakery algorithm solves the n-process problem

April 11, 2022 ECS 150, Operating Systems 3

Lamport’s Bakery Algorithm

var choosing: shared array[0..n-1] of boolean;
number: shared array[0..n-1] of integer;
...

repeat
choosing[i] <- true; / ... eEntry section
number[i] <- max(number[0],number[1],...,number[n-1]) + 1;
choosing[i] := false;
for j := 0 to n-1 do begin

while choosing[j] do
(* nothing *);

while number[j] ≠ 0 and (number[j], j) < (number[i],i) do
(* nothing *);

end;
/ ... critical section

number[i] := 0; / ... exit section
until false;

April 11, 2022 ECS 150, Operating Systems 4

Explanation

• choosing[i]: true if process i is choosing a number
• number[i]: number that process i will use to enter the critical section;

0 if process i is not trying to enter its critical section
Entry section:
• Process i signals it is choosing a number
• Process i tries to get a unique number
• May not happen due to race

• Process i indicates it is done

April 11, 2022 ECS 150, Operating Systems 5

Explanation

Which process goes in:
• Process i waits until it has the lowest number of all the processes

waiting to enter the critical section.
• If two processes have the same number, the one with the smaller name (like i)

goes in
• If another process is choosing a number when process i tries to look at it,

process i waits until it has done so before looking.

Exit section
• Process i no longer interested in entering its critical section, so it sets

number[i] to 0.

April 11, 2022 ECS 150, Operating Systems 6

Proof It Is a Solution

• Mutual exclusion: Suppose process i is in critical section. Some other
process k (k ≠ i) gets number[k] ≠ 0. Assume i < k; then

(number[i],i) < (number[k],k).
Suppose process k wants to enter the critical section, and process i is
in the critical section. When process k is in the for loop, and j = i, then
number[i] ≠ 0 and (number[i],i) < (number[k],k), so it loops in second
while statement

• Are bounded wait and progress satisfied? Yes, as processes enter the
critical section on FIFO basis.

April 11, 2022 ECS 150, Operating Systems 7

Hardware Indivisible Test-and-Set Instruction

• This is atomic, and cannot be interrupted:
function TaS(var Lock: boolean): boolean
begin

TaS: = Lock;
Lock = True;

end;
• It sets Lock to true and returns the previous value of Lock

April 11, 2022 ECS 150, Operating Systems 8

Test-and-Set n Process Solution: Variables

var waiting: shared array [0..n-1] of Boolean <- false;
Lock: shared Boolean <- false;
j: 0..n-1;
key: boolean;

• Waiting, Lock are shared by all n processes
• j, key are local variables

April 11, 2022 ECS 150, Operating Systems 9

Test-and-Set n Process Solution: Entry Section

repeat (* process Pi *)
waiting[i] := true;
key := true;
while waiting[i] and key do

key := TaS(Lock);
waiting[i] := false;

• Process i indicates it wants to go into critical section
• If Lock is true, then key will be true and process i loops at the while

statement
• When it can enter key is false, so it resets waiting[i] and enters.

Note the TaS(Lock) that sets key to false also sets Lock to true
April 11, 2022 ECS 150, Operating Systems 10

Test-and-Set n Process Solution: Exit Section

j := i + 1 mod n;
while (j <> i) and not waiting[j] do

j := j + 1 mod n;
if j = i then Lock := false
else waiting[j] := false;

until false;

• Process i exits and must choose who goes next
• If one (process j) is waiting, process i lets it proceed by setting

waiting[j] to true; note Lock remains true.
• If none are waiting, Lock is set to false

April 11, 2022 ECS 150, Operating Systems 11

Problems of All These

• Busy waiting; the CPU does nothing in such a way that no-one else
can use it while the process is waiting
• Not easily generalizable
• For example, Peterson's solution does not easily generalize to n processes

• So look for other solutions . . .

April 11, 2022 ECS 150, Operating Systems 12

Semaphores

• Non-negative integer variable sem that has 3 allowed operations:
• Initialization: initial value set atomically, as in

sem <- n
• signal: increment value of sem by 1, as in

sem <- sem + 1
• wait: block until value of sem is non-zero; then decrement value by 1, as in

while sem = 0 do block
sem <- sem – 1

April 11, 2022 ECS 150, Operating Systems 13

Blocking

• Each semaphore has an associated blocking (or waiting) queue
• When a process blocks, it goes into a queue
• When semaphore is non-zero, first process in queue is moved to the

ready queue
• Processes normally are removed from the queue in FIFO order

April 11, 2022 ECS 150, Operating Systems 14

Example
S1;
parbegin

begin S2; signal(a); signal(b); end;
begin wait(a); S3; signal(c); end;
begin wait(b); S4; signal(d); end;
begin S5; signal(e); end;
begin wait(d); wait(e); S6; signal(f); end;
begin S7; signal(g); end;
begin wait(c); wait(f); wait(g); S8; end;

parend;
April 11, 2022 ECS 150, Operating Systems 15

Semaphore Solution to Critical Section

• Initialize semaphore (call it mutex) to 1
• Then wait at the beginning of the critical section
• On exit, signal
semaphore mutex <- 1;

repeat
wait(mutex);
// critical section
signal(mutex);

until false;

April 11, 2022 ECS 150, Operating Systems 16

Process Synchronization Using Semaphores

Process 1

repeat
…
wait(mutex);
…

until false;

Process 2
repeat

…
signal(mutex);
…

until false;

April 11, 2022 ECS 150, Operating Systems 17

semaphore mutex <- 0;

Producers-Consumers Problem
• Initialize full to 0
• Initialize empty to n (size of buffer)
• Initialize mutex to 1 – used to enforce mutual exclusion for access to

the buffer
• Producer:

wait(empty); wait(mutex); item into buffer; signal(mutex); signal(full)
• Consumer:

wait(full); wait(mutex); item from buffer; signal(mutex); signal(empty)

April 11, 2022 ECS 150, Operating Systems 18

Demonstration

• Suppose empty is n, meaning the buffer is empty
• Consumer wants an item, but blocks at wait(full)
• Producer wants to produce item, so at wait(empty), it decrements empty,

puts item into buffer, and signals full to indicate there is an item in buffer
• Now, if buffer is full, empty is 0 and full is n
• Producer wants to produce an item, but has to wait for buffer to have an

empty spot; so it blocks on empty
• When consumer wants to take an item, at wait(full) it decrements full,

consumes the item, and signals empty to indicate there is an empty space
in buffer

April 11, 2022 ECS 150, Operating Systems 19

Readers-Writers Problem

• Processes share a file
• Some processes want to read it (the readers)
• Others want to write it (the writers)
• Rules:
• Any number of readers can access the file simultaneously
• When a writer is accessing the file, no other process (reader or writer) can

access the file

April 11, 2022 ECS 150, Operating Systems 20

Versions

• First version: readers have priority
• Even if a writer wants to access the file, it must wait until all readers are

finished with the file and no readers want access to the file
• Note: writers may never be able to access the file (said as “writers may

starve”)

• Second version: writers have priority
• Once a writer wants access to the file, no readers may obtain access
• Any readers with access continue to have access

April 11, 2022 ECS 150, Operating Systems 21

Demonstration (First Readers-Writers)

• Reader wants to read the file
• Sets mutual exclusion
• Adds that another reader wants to go in
• Release mutual exclusion
• If no other readers in critical section, wait for any writers
• If other readers in critical section, or no writers, enter critical section
• On exit, set mutual exclusion
• Decrement number of readers; if last one, signal any writers they can proceed
• Release mutual exclusion

• Summary
• Add 1 to the number of readers in, or wanting to enter, critical section
• If other readers in critical section, or no writers, enter critical section; otherwise, wait
• On exit, subtract 1 from the number of readers in or wanting to enter
• If no more readers, signal any writers

April 11, 2022 ECS 150, Operating Systems 22

Demonstration (First Readers-Writers)

• Writer wants to write the file
• Block until no readers and no other writers are in the critical section
• Set mutual exclusion for the critical section
• Enter
• Release mutual exclusion

• Summary
• Block until no other process is in the critical section
• Enter the critical section
• Unblock any waiting processes

• Note: mutual exclusion for critical section is not the same as for
incrementing or decrementing the number of readers wanting to enter the
critical section

April 11, 2022 ECS 150, Operating Systems 23

Dining Philosophers Problem

• Five philosophers are dining at a circular table
• There are five plate, one in front of each philosopher
• There are five forks, one between each plate
• Philosophers alternate between thinking and using both their right

and left forks to eat
• Problem: prevent starvation and deadlock

April 11, 2022 ECS 150, Operating Systems 24

Possible Solution

• Each philosopher picks the fork on their left
var fork: array [0..4] of semaphore: = 1,1,1,1,1
repeat (* philosopher i *)

wait(fork[i]);
wait(fork[(i + 1) mod 5]);
(* eat *)
signal(fork[i]);
signal(fork[(i + 1) mod 5]);
(* think *)

until false

April 11, 2022 ECS 150, Operating Systems 25

Do You See the Problem?

• Suppose all philosophers want to eat
• Each picks up their left fork (wait(fork[i]))
• All now want to pick up their right fork (wait(fork[(i + 1)
mod 5]))
• Oops . . . All right forks are the left forks of the philosophers to the

right
• So all philosophers wait until the one to their right begins to think
• . . . Deadlock!

April 11, 2022 ECS 150, Operating Systems 26

Problem

• Like fork/join/quit, semaphores are too low level
• Combine blocking with counting
• Really two separate operations, and should be treated as such

• Hard to debug
• Easy to make mistakes
• Think of typing wait when you meant to type signal
• Original name for wait (P), signal (V) even easier to mistype

• P from the Dutch passering (“passing”)
• V from the Dutch verhogen (“increase”)
• Taken from railroad signals

April 11, 2022 ECS 150, Operating Systems 27

