Security
Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines “security” for the site/system/etc.

- Mechanisms enforce policies

- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities
Goals of Security

• **Prevention**
 • Prevent attackers from violating security policy

• **Detection**
 • Detect attackers violating security policy

• **Recovery**
 • Stop attack, assess and repair damage
 • Continue to function correctly even if attack succeeds
Assumptions and Trust

• Underlie *all* aspects of security

• Policies
 • Unambiguously partition system states
 • Correctly capture security requirements

• Mechanisms
 • Assumed to enforce policy
 • Support mechanisms work correctly
Requirements

• Trusted Computer Security Evaluation Criteria (TCSEC)
 • And its derivatives, the “Rainbow Series”
• FIPS 140
 • For cryptographic implementations
• Common Criteria
 • For systems that match protection profiles
• System Security Engineering Capability Maturity Model (SSE-CMM)
 • For processes used to develop systems
• GDPR and CCPA
 • Laws in the EU and California that govern privacy
Design Principles

- Least privilege
 - Process should be given only those privileges necessary to complete its task
- Fail-safe defaults
 - Default is to deny permission
 - If action fails, system stays as secure as when action began
- Economy of mechanism
 - Keep things as simple as possible (KISS principle)
- Complete mediation
 - Check permissions on every access
Design Principles

• Open design
 • Security should not depend on secrecy of design or implementation

• Separation of privilege
 • Require multiple conditions to hold in order to grant privilege

• Least common mechanism
 • Minimize sharing of resources

• Least astonishment
 • Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 • Earlier version: principle of psychological acceptability, which says security mechanisms should not add to difficulty of accessing resource

May 23, 2022

ECS 150, Operating Systems
User or Subject Authentication

• Authentication: binding of identity to subject
 • Identity is that of external entity (my identity, Matt, etc.)
 • Subject is computer entity (process, etc.)
Establishing Identity

• One or more of the following
 • What entity knows (eg. password)
 • What entity has (eg. badge, smart card)
 • What entity is (eg. fingerprints, retinal characteristics)
 • Where entity is (eg. In front of a particular terminal)
Passwords

• Sequence of characters
 • Examples: 10 digits, a string of letters, etc.
 • Generated randomly, by user, by computer with user input

• Sequence of words
 • Examples: pass-phrases

• Algorithms
 • Examples: challenge-response, one-time passwords
Storage

• Store as cleartext
 • If password file compromised, all passwords revealed

• Encipher file
 • Need to have decipherment, encipherment keys in memory
 • Reduces to previous problem

• Store one-way hash of password
 • If file read, attacker must still guess passwords or invert the hash
Approaches: Password Selection

• Random selection
 • Any password from A equally likely to be selected
• Pronounceable passwords
• User selection of passwords
Random Passwords

• Choose characters randomly from a set of possible characters; may also choose length randomly from a set of possible lengths

• Expected time to guess password maximized when selection of characters in the set, lengths in the set, are equiprobable

• In practice, several factors to be considered:
 • If password too short, likely to be guessed
 • Some other classes of passwords need to be eliminated, such as repeated patterns (“aaaaa”), known patterns (“qwerty”)
 • But if too much is excluded, space of possible passwords becomes small enough to search exhaustively