Notes for October 27, 1999

1. Greetings and Felicitations!
 a. Midterm moved to Friday, November 5, 1999
 b. Example program put out in ~cs153/bin; it’s dec-where, hp-where, pc-where, sgi-where (one per type of system)

2. Puzzle of the Day

3. Classical
 a. monoalphabetic (simple substitution): \(f(a) = a + k \mod n \)
 b. example: Caesar with \(k = 3 \), RENAISSANCE \(\rightarrow \) UHQDLVVDQFH
 c. polyalphabetic: Vigenère, \(f_i(a) = (a + k_i) \mod n \)
 d. cryptanalysis: first do index of coincidence to see if it’s monoalphabetic or polyalphabetic, then Kasiski method.
 e. problem: eliminate periodicity of key

4. Long key generation
 a. Running-key cipher: M=THETREASUREISBURIED; K=THESECONDCIPHERISAN; C=MOILVGOFXTMXZFLZAEQ; wedge is that (plaintext,key) letter pairs are not random (T/T, H/H, E/E, T/S, R/E, A/O, S/N, etc.)
 b. Enigma/rotor systems; wheels, 3 rotors and a reflecting one. Go through it; UNIX uses this for crypt(1) command.
 c. Perfect secrecy: when the probability of computing the plaintext message is the same whether or not you have the ciphertext
 d. Only cipher with perfect secrecy: one-time pads; C=AZPR; is that DOIT or DONT?

5. DES
 a. Go through the algorithm

6. Public-Key Cryptography
 a. Basic idea: 2 keys, one private, one public
 b. Cryptosystem must satisfy:
 i. given public key, CI to get private key;
 ii. cipher withstands chosen plaintext attack;
 iii. encryption, decryption computationally feasible [note: commutativity not required]
 c. Benefits: can give confidentiality or authentication or both