Notes for November 17, 1999

1. Greetings and Felicitations!
2. Puzzle of the Day
3. Privilege in OSes
 a. None (original IBM OS; protect with password, or anyone can read it)
 b. Fence, base and bounds registers; relocation
 c. Tagged architectures
 d. Memory management based schemes: segmentation, paging, and paged segmentation
4. Different forms of access control
 a. UNIX method
 b. ACLs: describe, revocation issue
 c. MULTICS rings
5. MULTICS ring mechanism
 a. MULTICS rings: used for both data and procedures; rights are REWA
 b. \((b_1, b_2)\) access bracket - can access freely; \((b_3, b_4)\) call bracket - can call segment through gate; so if \(a\)'s access bracket is \((32,35)\) and its call bracket is \((36,39)\), then assuming permission mode (REWA) allows access, a procedure in:
 - rings 0-31: can access \(a\), but ring-crossing fault occurs
 - rings 32-35: can access \(a\), no ring-crossing fault
 - rings 36-39: can access \(a\), provided a valid gate is used as an entry point
 - rings 40-63: cannot access \(a\)
 c. If the procedure is accessing a data segment \(d\), no call bracket allowed; given the above, assuming permission mode (REWA) allows access, a procedure in:
 - rings 0-32: can access \(d\)
 - rings 33-35: can access \(d\), but cannot write to it (W or A)
 - rings 36-63: cannot access \(d\)
6. Capabilities
 a. Capability-based addressing: show picture of accessing object
 b. Show process limiting access by not inheriting all parent’s capabilities
 c. Revocation: use of a global descriptor table
7. Lock and Key
 a. Associate with each object a lock; associate with each process that has access to object a key (it’s a cross between ACLs and C-Lists)
 b. Example: use crypto (Gifford). \(X\) object enciphered with key \(K\). Associate an opener \(R\) with \(X\). Then:
 - OR-Access: \(K\) can be recovered with any \(D_i\) in a list of \(n\) deciphering transformations, so
 \[R = (E_1(K), E_2(K), ..., E_n(K)) \]
 - AND-Access: need all \(n\) deciphering functions to get \(K: R = E_1(E_2(...E_n(K)...))\)