
©2002 by Matt Bishop.
All rights reserved.

Slide #1

Buffer Overflows

• Traditionally considered as a technique to have
your code executed by a running program

• Other, less examined uses:
– Overflow data area to alter variable values
– Overflow heap to alter variable values or return

addresses
– Execute code contained in environment variables (not

fundamentally different, but usually stored on stack)

©2002 by Matt Bishop.
All rights reserved.

Slide #2

text
(instructions) data stack heap

Process Memory Structure

©2002 by Matt Bishop.
All rights reserved.

Slide #3

Typical Stack Structure

return address

processor status word

stack grows

stack shrinks

local
variable
values

local
variable
values

©2002 by Matt Bishop.
All rights reserved.

Slide #4

Idea

• Figure out what buffers are stored on the stack
• Write a small machine-language program to do

what you want (exec a shell, for example)
• Add enough bytes to pad out the buffer to reach

the return address
• Alter return address so it returns to the beginning

of the buffer
– Thereby executing your code …

©2002 by Matt Bishop.
All rights reserved.

Slide #5

main local
variables

return address
of main

other return
state info

gets local
variables

parameter to
gets

input buffer

main local
variables

address of
input buffer

other return
state info

gets local
variables

program to
invoke shell
program to
invoke shell

after
message

the usual stack the stack after the attack

In Pictures

©2002 by Matt Bishop.
All rights reserved.

Slide #6

In Words

• Parameter to gets(3) is a pointer to a buffer
– Here, buffer is 256 bytes long

• Buffer is local to caller, hence on the stack
• Input your shell executing program

– Must be in machine language of the target processor
– 45 bytes on a Linux/i386 PC box
– Pad it with 256–45 + 4 = 215 bytes
– Add 4 bytes containing address of buffer

• These alter the return address on the stack

©2002 by Matt Bishop.
All rights reserved.

Slide #7

Data Segment Buffer Overflows

• Can’t change return address
– Systems prevent crossing data, stack boundary

• Even if they didn’t, you would need to enter a pretty long
string to cross from data to stack segment!

• Change values of other critical parameters
– Variables stored in data area control execution, file

access
• Can change binary or string data using technique

similar to that of stack buffer overflowing

©2002 by Matt Bishop.
All rights reserved.

Slide #8

Example: login Problem

• Program stored user-typed password, hash from
password file in two adjacent arrays

• Algorithm
– Obtain user name, load corresponding hash into array
– Read user password into array, hash, compare to

contents of hash array
• Attack

– Generate any 8 character password, corresponding hash
– When asked for password, enter it, type 72 characters,

then type corresponding hash

©2002 by Matt Bishop.
All rights reserved.

Slide #9

buffer for cleartext password (80 bytes)
buffer for
hash (13 bytes)

0 79 80 92
store hash from
/etc/passwd when
given login name

load password buffer from 0 on

In Pictures

©2002 by Matt Bishop.
All rights reserved.

Slide #10

Selective Buffer Overflow

• Sets particular locations rather than just
overwriting everything

• Principles are the same, but you have to determine
the specific locations involved

• Cannot approximate, as you could for general
stack overflow; need exact address
– Advantage: it’s fixed across all invocations of the

program, whereas a stack address can change
depending on memory layout, input, or other actions

©2002 by Matt Bishop.
All rights reserved.

Slide #11

Sendmail Configuration File

• sendmail takes debugging flags of form flag.value
– sendmail -d7,102 sets debugging flag 7 to value 102

• Flags stored in array in data segment
• Name of default configuration file also stored in

array in data segment
– It’s called sendmail.cf

• Config file contains name of local delivery agent
– Mlocal line; usually /bin/mail …

©2002 by Matt Bishop.
All rights reserved.

Slide #12

In Pictures
/ e t c
/ s e n
d m a i
l . c f

configuration file name

byte for flag 0

100
104

128

Create your own config file,
making the local mailer be whatever
you want. Then run sendmail with the
following debug flags settings: flag
–27 to 117 (‘t’), –26 to 110 (‘m’), and
–25 to 113 (‘p’). Have it deliver a
letter to any local address …

©2002 by Matt Bishop.
All rights reserved.

Slide #13

Problems and Solutions

• Sendmail won’t recognize negative flag numbers
• So make them unsigned (positive)!

–27 becomes 232 – 27 = 4294967269
–26 becomes 232 – 26 = 4294967270
–25 becomes 232 – 26 = 4294967271

• Command is:
sendmail -d4294967269,117 -d4294967270,110 \
 -d4294967271,113 …

©2002 by Matt Bishop.
All rights reserved.

Slide #14

Numeric Overflows

• Program may assume a particular value stays in a
bound
– May depend on assumptions about operating system or

other interfaces
• Look for ways to overflow or underflow them

– Proper programs will check for errors
– Common error: ignore overflow (> 232–1)
– Type punning helpful (especially signed and unsigned

integers)

©2002 by Matt Bishop.
All rights reserved.

Slide #15

Attack: NFS UIDs

• UNIX UIDs are 16 bits on many systems
• NFS uses a 32-bit UID

– Done specifically for portability
• NFS server invokes UNIX kernel with UID of

remote user
– Kernel does access control checking

• NFS disallows UID 0
– Mapped into 65534 (or –2), the user nobody, before

kernel invoked
– You can override this in a configuration file, but

administrators rarely do (and should not, in general)

©2002 by Matt Bishop.
All rights reserved.

Slide #16

Obvious Question

• What happens at the NFS server if NFS client
user’s UID is 217?

– Can’t give this directly to UNIX kernel, as the latter
takes only UIDs of 216–1 or less

• Hypothesis: UID is truncated to 16 bits by NFS
server
– Assumes maximum UID for server system is 216–1
– Give it to NFS and see …

• Idea: check all programs that take UIDs as
integers

©2002 by Matt Bishop.
All rights reserved.

Slide #17

Results of the Attack

• NFS client sends request, UID to NFS server
• NFS server takes UID, checks that it is not 0

– As 217 ≠ 0, UID is not remapped
• NFS gives UID to UNIX kernel for access control
• UNIX kernel discards high-order bits …

– As 217 = 0000 0000 0000 0001 0000 0000 0000 0000,
the UID that the kernel sees is 0

– Presto! root access to files

©2002 by Matt Bishop.
All rights reserved.

Slide #18

strn Functions

• What happens when n is negative?
– Proper behavior: nothing, or error message
– Usual behavior: goes until NUL encountered

(effectively the same as strcpy and strcat, etc.)
• Suppose first, second arguments overlap?

– Manual says they “must not overlap”
– Behavior varies from system to system

