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Buffer Overflows

• Traditionally considered as a technique to have
your code executed by a running program

• Other, less examined uses:
– Overflow data area to alter variable values
– Overflow heap to alter variable values or return

addresses
– Execute code contained in environment variables (not

fundamentally different, but usually stored on stack)
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Idea

• Figure out what buffers are stored on the stack
• Write a small machine-language program to do

what you want (exec a shell, for example)
• Add enough bytes to pad out the buffer to reach

the return address
• Alter return address so it returns to the beginning

of the buffer
– Thereby executing your code …
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In Words

• Parameter to gets(3) is a pointer to a buffer
– Here, buffer is 256 bytes long

• Buffer is local to caller, hence on the stack
• Input your shell executing program

– Must be in machine language of the target processor
– 45 bytes on a Linux/i386 PC box
– Pad it with 256–45 + 4 = 215 bytes
– Add 4 bytes containing address of buffer

• These alter the return address on the stack
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Data Segment Buffer Overflows

• Can’t change return address
– Systems prevent crossing data, stack boundary

• Even if they didn’t, you would need to enter a pretty long
string to cross from data to stack segment!

• Change values of other critical parameters
– Variables stored in data area control execution, file

access
• Can change binary or string data using technique

similar to that of stack buffer overflowing
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Example: login Problem

• Program stored user-typed password, hash from
password file in two adjacent arrays

• Algorithm
– Obtain user name, load corresponding hash into array
– Read user password into array, hash, compare to

contents of hash array
• Attack

– Generate any 8 character password, corresponding hash
– When asked for password, enter it, type 72 characters,

then type corresponding hash
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Selective Buffer Overflow

• Sets particular locations rather than just
overwriting everything

• Principles are the same, but you have to determine
the specific locations involved

• Cannot approximate, as you could for general
stack overflow; need exact address
– Advantage: it’s fixed across all invocations of the

program, whereas a stack address can change
depending on memory layout, input, or other actions
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Sendmail Configuration File

• sendmail takes debugging flags of form flag.value
– sendmail -d7,102 sets debugging flag 7 to value 102

• Flags stored in array in data segment
• Name of default configuration file also stored in

array in data segment
– It’s called sendmail.cf

• Config file contains name of local delivery agent
– Mlocal line; usually /bin/mail …
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In Pictures
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Create your own config file,
making the local mailer be whatever
you want. Then run sendmail with the
following debug flags settings: flag
–27 to 117 (‘t’), –26 to 110 (‘m’), and
–25 to 113 (‘p’). Have it deliver a
letter to any local address …
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Problems and Solutions

• Sendmail won’t recognize negative flag numbers
• So make them unsigned (positive)!

–27 becomes 232 – 27 = 4294967269
–26 becomes 232 – 26 = 4294967270
–25 becomes 232 – 26 = 4294967271

• Command is:
sendmail -d4294967269,117 -d4294967270,110 \
 -d4294967271,113 …
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Numeric Overflows

• Program may assume a particular value stays in a
bound
– May depend on assumptions about operating system or

other interfaces
• Look for ways to overflow or underflow them

– Proper programs will check for errors
– Common error: ignore overflow (> 232–1)
– Type punning helpful (especially signed and unsigned

integers)
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Attack: NFS UIDs

• UNIX UIDs are 16 bits on many systems
• NFS uses a 32-bit UID

– Done specifically for portability
• NFS server invokes UNIX kernel with UID of

remote user
– Kernel does access control checking

• NFS disallows UID 0
– Mapped into 65534 (or –2), the user nobody, before

kernel invoked
– You can override this in a configuration file, but

administrators rarely do (and should not, in general)
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Obvious Question

• What happens at the NFS server if NFS client
user’s UID is 217?

– Can’t give this directly to UNIX kernel, as the latter
takes only UIDs of 216–1 or less

• Hypothesis: UID is truncated to 16 bits by NFS
server
– Assumes maximum UID for server system is 216–1
– Give it to NFS and see …

• Idea: check all programs that take UIDs as
integers
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Results of the Attack

• NFS client sends request, UID to NFS server
• NFS server takes UID, checks that it is not 0

– As 217 ≠ 0, UID is not remapped
• NFS gives UID to UNIX kernel for access control
• UNIX kernel discards high-order bits …

– As 217 =  0000 0000 0000 0001 0000 0000 0000 0000,
the UID that the kernel sees is 0

– Presto! root access to files
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strn Functions

• What happens when n is negative?
– Proper behavior: nothing, or error message
– Usual behavior: goes until NUL encountered

(effectively the same as strcpy and strcat, etc.)
• Suppose first, second arguments overlap?

– Manual says they “must not overlap”
– Behavior varies from system to system


