Outline for October 20, 2003

Reading: Chapters 9.3—9.4

Discussion Problem

“To fight and conquer in all your battles is not supreme excellence; supreme excellence consists in breaking the enemy’s resistance without fighting. In the practical art of war, the best thing of all is to take the enemy’s country whole and intact; to shatter and destroy it is not so good. So, too, it is better to capture an army entire than to destroy it, to capture a regiment, a detachment, or a company entire than to destroy it.”

What does this paragraph say to a system administrator or security officer seeking insight to defend her systems?

Outline for the Day

1. **Public-Key Cryptography**
 a. Basic idea: 2 keys, one private, one public
 b. Cryptosystem must satisfy:
 i. given public key, CI to get private key;
 ii. cipher withstands chosen plaintext attack;
 iii. encryption, decryption computationally feasible [note: commutativity not required]
 c. Benefits: can give confidentiality or authentication or both
2. **RSA**
 a. Provides both authenticity and confidentiality
 b. Go through algorithm:
 Idea: $C = M^e \mod n, M = C^d \mod n$, with $ed \mod \phi(n) = 1$.
 Proof: $M^{ed} \mod n = 1$ [by Fermat’s theorem as generalized by Euler]; follows immediately from $ed \mod \phi(n) = 1$.
 Public key is (e, n); private key is d. Choose $n = pq$; then $\phi(n) = (p-1)(q-1)$.
 c. Example:
 $p = 5$, $q = 7$; $n = 35, \phi(n) = (5-1)(7-1) = 24$. Pick $e = 11$. Then $ed \mod \phi(n) = 1$, so choose $d = 11$. To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35 = 2$.
 d. Example: $p = 53$, $q = 61$, $n = 3233$, $\phi(n) = (53-1)(61-1) = 3120$. Take $e = 71$; then $d = 791$. Encipher $M = \text{RENAISSANCE}$: $A = 00, B = 01, \ldots, Z = 25, \text{blank} = 26$. Then: $M = \text{RENAISSANCE}$ blank $= 1704\ 1300\ 0818\ 1800\ 1302\ 0426$ $C = (1704)^{71} \mod 3233 = 3106$; etc. $= 3106\ 0100\ 0931\ 2691\ 1984\ 2927$
3. **Cryptographic Checksums**
 a. Function $y = h(x)$: easy to compute y given x; computationally infeasible to compute x given y
 b. Variant: given x and y, computationally infeasible to find a second $x’$ such that $y = h(x’)$.
 c. Keyed vs. keyless
