Outline for May 5, 2005

Reading: §12.3–12.6, §22.2, §15

Discussion

It has often been said that the only way to decipher a message that has been enciphered using RSA is to factor the modulus \(n \) used by the cipher. If you were told that an enciphered message was on a computer that you controlled, and that the message was enciphered using RSA with an \(n \) of 1024 bits (about 309 decimal digits), how would you find the encrypter’s private key?

Outline

1. Challenge-response systems
 a. Computer issues challenge, user presents response to verify secret information known/item possessed
 b. Example operations: \(f(x) = x + 1 \), random string (for users without computers), time of day, computer sends \(E(x) \), you answer \(E(D(E(x)) + 1) \)
 c. Note: password never sent on wire or network
 d. Attack: man-in-the-middle
 e. Defense: mutual authentication
2. Biometrics
 a. Depend on physical characteristics
 b. Examples: pattern of typing (remarkably effective), retinal scans, etc.
3. Location
 a. Bind user to some location detection device (human, GPS)
 b. Authenticate by location of the device
4. Combinations: PAM
5. Access Control Lists
 a. UNIX method
 b. ACLs: describe, revocation issue
6. Capabilities
 a. Capability-based addressing: show picture of accessing object
 b. Show process limiting access by not inheriting all parent’s capabilities
 c. Revocation: use of a global descriptor table
7. Privilege in Languages
 a. Nesting program units
 b. Temporary upgrading of privileges
8. Lock and Key
 a. Associate with each object a lock; associate with each process that has access to object a key (it’s a cross between ACLs and C-Lists)
 b. Example: use crypto (Gifford). \(X \) object enciphered with key \(K \). Associate an opener \(R \) with \(X \). Then: OR-Access: \(K \) can be recovered with any \(D_i \) in a list of \(n \) deciphering transformations, so
 \[
 R = (E_1(K), E_2(K), ..., E_n(K))
 \]
 and any process with access to any of the \(D_i \)’s can access the file
 AND-Access: need all \(n \) deciphering functions to get \(K: R = E_1(E_2(...E_n(K))) \)
 c. Types and locks
9. MULTICS ring mechanism
 a. MULTICS rings: used for both data and procedures; rights are REWA
 b. \((b_1, b_2)\) access bracket - can access freely; \((b_3, b_4)\) call bracket - can call segment through gate; so if \(a \)’s access bracket is (32,35) and its call bracket is (36,39), then assuming permission mode (REWA) allows...
access, a procedure in:
rings 0-31: can access a, but ring-crossing fault occurs
rings 32-35: can access a, no ring-crossing fault
rings 36-39: can access a, provided a valid gate is used as an entry point
rings 40-63: cannot access a
c. If the procedure is accessing a data segment d, no call bracket allowed; given the above, assuming permission mode (REWA) allows access, a procedure in:
rings 0-32: can access d
rings 33-35: can access d, but cannot write to it (W or A)
rings 36-63: cannot access d