
April 7, 2005 ECS 153 Spring Quarter 2005 Slide #1

Security Design Principles
• Overview
• Principles

– Least Privilege
– Fail-Safe Defaults
– Economy of Mechanism
– Complete Mediation
– Open Design
– Separation of Privilege
– Least Common Mechanism
– Psychological Acceptability

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #2

Overview

• Simplicity
– Less to go wrong
– Fewer possible inconsistencies
– Easy to understand

• Restriction
– Minimize access
– Inhibit communication

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #3

Least Privilege

• A subject should be given only those
privileges necessary to complete its task
– Function, not identity, controls
– Rights added as needed, discarded after use
– Minimal protection domain

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #4

Fail-Safe Defaults

• Default action is to deny access
• If action fails, system as secure as when

action began

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #5

Economy of Mechanism

• Keep it as simple as possible
– KISS Principle

• Simpler means less can go wrong
– And when errors occur, they are easier to

understand and fix
• Interfaces and interactions

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #6

Complete Mediation

• Check every access
• Usually done once, on first action

– UNIX: access checked on open, not checked
thereafter

• If permissions change after, may get
unauthorized access

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #7

Open Design

• Security should not depend on secrecy of
design or implementation
– Popularly misunderstood to mean that source

code should be public
– “Security through obscurity”
– Does not apply to information such as

passwords or cryptographic keys

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #8

Separation of Privilege

• Require multiple conditions to grant
privilege
– Separation of duty
– Defense in depth

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #9

Least Common Mechanism

• Mechanisms should not be shared
– Information can flow along shared channels
– Covert channels

• Isolation
– Virtual machines
– Sandboxes

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #10

Psychological Acceptability

• Security mechanisms should not add to
difficulty of accessing resource
– Hide complexity introduced by security

mechanisms
– Ease of installation, configuration, use
– Human factors critical here

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #11

Key Points

• Principles of secure design underlie all
security-related mechanisms

• Require:
– Good understanding of goal of mechanism and

environment in which it is to be used
– Careful analysis and design
– Careful implementation

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #12

Chapter 4: Security Policies
• Overview
• The nature of policies

– What they cover
– Policy languages

• The nature of mechanisms
– Types
– Secure vs. precise

• Underlying both
– Trust

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #13

Overview

• Overview
• Policies
• Trust
• Nature of Security Mechanisms
• Policy Expression Languages
• Limits on Secure and Precise Mechanisms

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #14

Security Policy

• Policy partitions system states into:
– Authorized (secure)

• These are states the system can enter
– Unauthorized (nonsecure)

• If the system enters any of these states, it’s a
security violation

• Secure system
– Starts in authorized state
– Never enters unauthorized state

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #15

Confidentiality

• X set of entities, I information
• I has confidentiality property with respect to X if

no x ∈ X can obtain information from I
• I can be disclosed to others
• Example:

– X set of students
– I final exam answer key
– I is confidential with respect to X if students cannot

obtain final exam answer key

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #16

Integrity
• X set of entities, I information
• I has integrity property with respect to X if all x ∈ X trust

information in I
• Types of integrity:

– trust I, its conveyance and protection (data integrity)
– I information about origin of something or an identity (origin

integrity, authentication)
– I resource: means resource functions as it should (assurance)

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #17

Availability
• X set of entities, I resource
• I has availability property with respect to X if all x ∈ X

can access I
• Types of availability:

– traditional: x gets access or not
– quality of service: promised a level of access (for example, a

specific level of bandwidth) and not meet it, even though some
access is achieved

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #18

Policy Models

• Abstract description of a policy or class of
policies

• Focus on points of interest in policies
– Security levels in multilevel security models
– Separation of duty in Clark-Wilson model
– Conflict of interest in Chinese Wall model

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #19

Types of Security Policies

• Military (governmental) security policy
– Policy primarily protecting confidentiality

• Commercial security policy
– Policy primarily protecting integrity

• Confidentiality policy
– Policy protecting only confidentiality

• Integrity policy
– Policy protecting only integrity

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #20

Integrity and Transactions

• Begin in consistent state
– “Consistent” defined by specification

• Perform series of actions (transaction)
– Actions cannot be interrupted
– If actions complete, system in consistent state
– If actions do not complete, system reverts to

beginning (consistent) state

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #21

Trust

Administrator installs patch
1. Trusts patch came from vendor, not

tampered with in transit
2. Trusts vendor tested patch thoroughly
3. Trusts vendor’s test environment

corresponds to local environment
4. Trusts patch is installed correctly

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #22

Trust in Formal Verification

• Gives formal mathematical proof that given
input i, program P produces output o as
specified

• Suppose a security-related program S
formally verified to work with operating
system O

• What are the assumptions?

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #23

Trust in Formal Methods

1. Proof has no errors
• Bugs in automated theorem provers

2. Preconditions hold in environment in which S is
to be used

3. S transformed into executable S′ whose actions
follow source code

– Compiler bugs, linker/loader/library problems
4. Hardware executes S′ as intended

– Hardware bugs (Pentium f00f bug, for example)

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #24

Types of Access Control
• Discretionary Access Control (DAC, IBAC)

– individual user sets access control mechanism to allow or deny
access to an object

• Mandatory Access Control (MAC)
– system mechanism controls access to object, and individual

cannot alter that access
• Originator Controlled Access Control (ORCON)

– originator (creator) of information controls who can access
information

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #25

Question
• Policy disallows cheating

– Includes copying homework, with or without permission
• CS class has students do homework on computer
• Anne forgets to read-protect her homework file
• Bill copies it
• Who cheated?

– Anne, Bill, or both?

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #26

Answer Part 1

• Bill cheated
– Policy forbids copying homework assignment
– Bill did it
– System entered unauthorized state (Bill having a copy

of Anne’s assignment)
• If not explicit in computer security policy,

certainly implicit
– Not credible that a unit of the university allows

something that the university as a whole forbids, unless
the unit explicitly says so

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #27

Answer Part #2

• Anne didn’t protect her homework
– Not required by security policy

• She didn’t breach security
• If policy said students had to read-protect

homework files, then Anne did breach
security
– She didn’t do this

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #28

Mechanisms

• Entity or procedure that enforces some part
of the security policy
– Access controls (like bits to prevent someone

from reading a homework file)
– Disallowing people from bringing CDs and

floppy disks into a computer facility to control
what is placed on systems

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #29

Policy Languages

• Express security policies in a precise way
• High-level languages

– Policy constraints expressed abstractly
• Low-level languages

– Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #30

High-Level Policy Languages

• Constraints expressed independent of
enforcement mechanism

• Constraints restrict entities, actions
• Constraints expressed unambiguously

– Requires a precise language, usually a
mathematical, logical, or programming-like
language

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #31

Example: Web Browser

• Goal: restrict actions of Java programs that
are downloaded and executed under control
of web browser

• Language specific to Java programs
• Expresses constraints as conditions

restricting invocation of entities

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #32

Expressing Constraints
• Entities are classes, methods

– Class: set of objects that an access constraint constrains
– Method: set of ways an operation can be invoked

• Operations
– Instantiation: s creates instance of class c: s –| c
– Invocation: s1 executes object s2: s1 |→ s2

• Access constraints
– deny(s op x) when b
– While b is true, subject s cannot perform op on (subject or class)
x; empty s means all subjects

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #33

Sample Constraints

• Downloaded program cannot access password
database file on UNIX system

• Program’s class and methods for files:
class File {
public file(String name);
public String getfilename();
public char read();

• Constraint:
deny(|-> file.read) when

(file.getfilename() == “/etc/passwd”)

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #34

Another Sample Constraint

• At most 100 network connections open
• Socket class defines network interface

– Network.numconns method giving number of
active network connections

• Constraint
deny(-| Socket) when

(Network.numconns >= 100)

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #35

DTEL

• Basis: access can be constrained by types
• Combines elements of low-level, high-level

policy languages
– Implementation-level constructs express

constraints in terms of language types
– Constructs do not express arguments or inputs

to specific system commands

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #36

Example

• Goal: users cannot write to system binaries
• Subjects in administrative domain can

– User must authenticate to enter that domain
• Subjects belong to domains:

– d_user ordinary users
– d_admin administrative users
– d_login for login
– d_daemon system daemons

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #37

Types
• Object types:

– t_sysbin executable system files
– t_readable readable files
– t_writablewritable files
– t_dte data used by enforcement mechanisms
– t_generic data generated from user processes

• For example, treat these as partitions
– In practice, files can be readable and writable; ignore this for the

example

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #38

Domain Representation

• Sequence
– First component is list of programs that start in

the domain
– Other components describe rights subject in

domain has over objects of a type
(crwd->t_writable)

means subject can create, read, write, and list
(search) any object of type t_writable

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #39

d_daemon Domain
domain d_daemon = (/sbin/init),

(crwd->t_writable),
(rd->t_generic, t_readable, t_dte),
(rxd->t_sysbin),
(auto->d_login);

• Compromising subject in d_daemon domain does
not enable attacker to alter system files
– Subjects here have no write access

• When /sbin/init invokes login program, login
program transitions into d_login domain

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #40

d_admin Domain
domain d_admin =

(/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),
(crwxd->t_generic),
(crwxd->t_readable, t_writable, t_dte,

t_sysbin),
(sigtstp->d_daemon);

• sigtstp allows subjects to suspend processes
in d_daemon domain

• Admin users use a standard command
interpreter

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #41

d_user Domain
domain d_user =

(/usr/bin/sh, /usr/bin/csh, /usr/bin/ksh),
(crwxd->t_generic),
(rxd->t_sysbin),
(crwd->t_writable),
(rd->t_readable, t_dte);

• No auto component as no user commands transition out of
it

• Users cannot write to system binaries

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #42

d_login Domain
domain d_login =

(/usr/bin/login),
(crwd->t_writable),
(rd->t_readable, t_generic, t_dte),
setauth,
(exec->d_user, d_admin);

• Cannot execute anything except the transition
– Only /usr/bin/login in this domain

• setauth enables subject to change UID
• exec access to d_user, d_admin domains

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #43

Set Up
initial_domain = d_daemon;

– System starts in d_daemon domain
assign –r t_generic /;
assign –r t_writable /usr/var, /dev, /tmp;
assign –r t_readable /etc;
assign –r –s dte_t /dte;
assign –r –s t_sysbin /sbin, /bin,

 /usr/bin, /usr/sbin;
– These assign initial types to objects
– –r recursively assigns type
– –s binds type to name of object (delete it, recreate it, still of given

type)

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #44

Add Log Type
• Goal: users can’t modify system logs; only subjects in
d_admin, new d_log domains can

type t_readable, t_writable, t_sysbin,
t_dte, t_generic, t_log;

• New type t_log
domain d_log =

(/usr/sbin/syslogd),
(crwd->t_log),
(rwd->t_writable),
(rd->t_generic, t_readable);

• New domain d_log

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #45

Fix Domain and Set-Up
domain d_daemon =

(/sbin/init),
(crwd->t_writable),
(rxd->t_readable),
(rd->t_generic, t_dte, t_sysbin),
(auto->d_login, d_log);
– Subject in d_daemon can invoke logging process
– Can log, but not execute anything

assign -r t_log /usr/var/log;
assign t_writable /usr/var/log/wtmp, /usr/var/log/utmp;

– Set type of logs

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #46

Low-Level Policy Languages

• Set of inputs or arguments to commands
– Check or set constraints on system

• Low level of abstraction
– Need details of system, commands

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #47

Example: X Window System

• UNIX X11 Windowing System
• Access to X11 display controlled by list

– List says what hosts allowed, disallowed access
xhost +groucho -chico

• Connections from host groucho allowed
• Connections from host chico not allowed

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #48

Example: tripwire

• File scanner that reports changes to file
system and file attributes
– tw.config describes what may change
/usr/mab/tripwire +gimnpsu012345678-a

• Check everything but time of last access (“-a”)
– Database holds previous values of attributes

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #49

Example Database Record
/usr/mab/tripwire/README 0/. 100600 45763 1

917 10 33242 .gtPvf .gtPvY .gtPvY 0
.ZD4cc0Wr8i21ZKaI..LUOr3
.0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3
1M4GX01xbGIX0oVuGo1h15z3
?:Y9jfa04rdzM1q:eqt1APgHk
?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC
?1M4GX01xbGIX2947jdyrior38h15z3 0

• file name, version, bitmask for attributes, mode,
inode number, number of links, UID, GID, size,
times of creation, last modification, last access,
cryptographic checksums

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #50

Comments
• System administrators not expected to edit database to set

attributes properly
• Checking for changes with tripwire is easy

– Just run once to create the database, run again to check
• Checking for conformance to policy is harder

– Need to either edit database file, or (better) set system up to
conform to policy, then run tripwire to construct database

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #51

Example English Policy

• Computer security policy for academic
institution
– Institution has multiple campuses,

administered from central office
– Each campus has its own administration, and

unique aspects and needs
• Authorized Use Policy
• Electronic Mail Policy

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #52

Authorized Use Policy
• Intended for one campus (Davis) only
• Goals of campus computing

– Underlying intent
• Procedural enforcement mechanisms

– Warnings
– Denial of computer access
– Disciplinary action up to and including expulsion

• Written informally, aimed at user community

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #53

Electronic Mail Policy

• Systemwide, not just one campus
• Three parts

– Summary
– Full policy
– Interpretation at the campus

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #54

Summary

• Warns that electronic mail not private
– Can be read during normal system

administration
– Can be forged, altered, and forwarded

• Unusual because the policy alerts users to
the threats
– Usually, policies say how to prevent problems,

but do not define the threats

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #55

Summary
• What users should and should not do

– Think before you send
– Be courteous, respectful of others
– Don’t interfere with others’ use of email

• Personal use okay, provided overhead minimal
• Who it applies to

– Problem is UC is quasi-governmental, so is bound by rules that
private companies may not be

– Educational mission also affects application

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #56

Full Policy
• Context

– Does not apply to Dept. of Energy labs run by the university
– Does not apply to printed copies of email

• Other policies apply here
• E-mail, infrastructure are university property

– Principles of academic freedom, freedom of speech apply
– Access without user’s permission requires approval of vice

chancellor of campus or vice president of UC
– If infeasible, must get permission retroactively

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #57

Uses of E-mail

• Anonymity allowed
– Exception: if it violates laws or other policies

• Can’t interfere with others’ use of e-mail
– No spam, letter bombs, e-mailed worms, etc.

• Personal e-mail allowed within limits
– Cannot interfere with university business
– Such e-mail may be a “university record”

subject to disclosure

April 7, 2005 ECS 153 Spring Quarter 2005 Slide #58

Security of E-mail

• University can read e-mail
– Won’t go out of its way to do so
– Allowed for legitimate business purposes
– Allowed to keep e-mail robust, reliable

• Archiving and retention allowed
– May be able to recover e-mail from end system

(backed up, for example)

