
April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Cryptographic Checksums

• Mathematical function to generate a set of k
bits from a set of n bits (where k ≤ n).
– k is smaller then n except in unusual

circumstances
• Example: ASCII parity bit

– ASCII has 7 bits; 8th bit is “parity”
– Even parity: even number of 1 bits
– Odd parity: odd number of 1 bits

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Example Use

• Bob receives “10111101” as bits.
– Sender is using even parity; 6 1 bits, so

character was received correctly
• Note: could be garbled, but 2 bits would need to

have been changed to preserve parity
– Sender is using odd parity; even number of 1

bits, so character was not received correctly

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Definition

• Cryptographic checksum h: A→B:
1. For any x ∈ A, h(x) is easy to compute
2. For any y ∈ B, it is computationally infeasible to

find x ∈ A such that h(x) = y
3. It is computationally infeasible to find two inputs

x, x′ ∈ A such that x ≠ x′ and h(x) = h(x′)
– Alternate form (stronger): Given any x ∈ A, it is

computationally infeasible to find a different x′ ∈ A
such that h(x) = h(x′).

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Collisions

• If x ≠ x′ and h(x) = h(x′), x and x′ are a
collision
– Pigeonhole principle: if there are n containers

for n+1 objects, then at least one container will
have 2 objects in it.

– Application: if there are 32 files and 8 possible
cryptographic checksum values, at least one
value corresponds to at least 4 files

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #5

Keys

• Keyed cryptographic checksum: requires
cryptographic key
– DES in chaining mode: encipher message, use

last n bits. Requires a key to encipher, so it is a
keyed cryptographic checksum.

• Keyless cryptographic checksum: requires
no cryptographic key
– MD5 and SHA-1 are best known; others

include MD4, HAVAL, and Snefru

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #6

HMAC

• Make keyed cryptographic checksums from
keyless cryptographic checksums

• h keyless cryptographic checksum function that
takes data in blocks of b bytes and outputs blocks
of l bytes. k′ is cryptographic key of length b bytes
– If short, pad with 0 bytes; if long, hash to length b

• ipad is 00110110 repeated b times
• opad is 01011100 repeated b times
• HMAC-h(k, m) = h(k′ ⊕ opad || h(k′ ⊕ ipad || m))

– ⊕ exclusive or, || concatenation

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Key Points

• Two main types of cryptosystems: classical and
public key

• Classical cryptosystems encipher and decipher
using the same key
– Or one key is easily derived from the other

• Public key cryptosystems encipher and decipher
using different keys
– Computationally infeasible to derive one from the other

• Cryptographic checksums provide a check on
integrity

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #8

Overview

• Key exchange
– Session vs. interchange keys
– Classical, public key methods

• Cryptographic key infrastructure
– Certificates

• Digital signatures

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Notation
• X → Y : { Z || W } kX,Y

– X sends Y the message produced by concatenating Z and W enciphered by
key kX,Y, which is shared by users X and Y

• A → T : { Z } kA || { W } kA,T

– A sends T a message consisting of the concatenation of Z enciphered
using kA, A’s key, and W enciphered using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Session, Interchange Keys
• Alice wants to send a message m to Bob

– Assume public key encryption
– Alice generates a random cryptographic key ks and uses it to

encipher m
• To be used for this message only
• Called a session key

– She enciphers ks with Bob;s public key kB
• kB enciphers all session keys Alice uses to communicate with Bob
• Called an interchange key

– Alice sends { m } ks { ks } kB

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Benefits
• Limits amount of traffic enciphered with single key

– Standard practice, to decrease the amount of traffic an attacker can
obtain

• Prevents some attacks
– Example: Alice will send Bob message that is either “BUY” or

“SELL”. Eve computes possible ciphertexts { “BUY” } kB and {
“SELL” } kB. Eve intercepts enciphered message, compares, and
gets plaintext at once

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #12

Key Exchange Algorithms
• Goal: Alice, Bob get shared key

– Key cannot be sent in clear
• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data plus data not

known to an eavesdropper
– Alice, Bob may trust third party
– All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only to Alice and
Bob needed to derive keys

• Anything transmitted is assumed known to attacker

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #13

Classical Key Exchange

• Bootstrap problem: how do Alice, Bob
begin?
– Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
– Alice and Cathy share secret key kA

– Bob and Cathy share secret key kB

• Use this to exchange shared key ks

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Problems

• How does Bob know he is talking to Alice?
– Replay attack: Eve records message from Alice

to Bob, later replays it; Bob may think he’s
talking to Alice, but he isn’t

– Session key reuse: Eve replays message from
Alice to Bob, so Bob re-uses session key

• Protocols must provide authentication and
defense against replay

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #17

Argument: Alice talking to Bob
• Second message

– Enciphered using key only she, Cathy knows
• So Cathy enciphered it

– Response to first message
• As r1 in it matches r1 in first message

• Third message
– Alice knows only Bob can read it

• As only Bob can derive session key from message
– Any messages enciphered with that key are from Bob

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #18

Argument: Bob talking to Alice
• Third message

– Enciphered using key only he, Cathy know
• So Cathy enciphered it

– Names Alice, session key
• Cathy provided session key, says Alice is other party

• Fourth message
– Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds incorrectly

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #19

Denning-Sacco Modification

• Assumption: all keys are secret
• Question: suppose Eve can obtain session key.

How does that affect protocol?
– In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step

– First in previous slide
• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either

reject valid messages or accept replays
– Parties with either slow or fast clocks vulnerable to

replay
– Resetting clock does not eliminate vulnerability

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Otway-Rees Protocol

• Corrects problem
– That is, Eve replaying the third message in the

protocol
• Does not use timestamps

– Not vulnerable to the problems that Denning-
Sacco modification has

• Uses integer n to associate all messages
with particular exchange

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #23

The Protocol

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bobn || Alice || Bob || { r1 || n || Alice || Bob } kA ||
{ r2 || n || Alice || Bob } kB

Cathy Bobn || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Argument: Alice talking to Bob

• Fourth message
– If n matches first message, Alice knows it is

part of this protocol exchange
– Cathy generated ks because only she, Alice

know kA

– Enciphered part belongs to exchange as r1
matches r1 in encrypted part of first message

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #25

Argument: Bob talking to Alice

• Third message
– If n matches second message, Bob knows it is

part of this protocol exchange
– Cathy generated ks because only she, Bob

know kB

– Enciphered part belongs to exchange as r2
matches r2 in encrypted part of second message

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #26

Replay Attack

• Eve acquires old ks, message in third step
– n || { r1 || ks } kA || { r2 || ks } kB

• Eve forwards appropriate part to Alice
– Alice has no ongoing key exchange with Bob: n matches nothing,

so is rejected
– Alice has ongoing key exchange with Bob: n does not match, so is

again rejected
• If replay is for the current key exchange, and Eve sent the relevant

part before Bob did, Eve could simply listen to traffic; no replay
involved

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Kerberos

• Authentication system
– Based on Needham-Schroeder with Denning-Sacco modification
– Central server plays role of trusted third party (“Cathy”)

• Ticket
– Issuer vouches for identity of requester of service

• Authenticator
– Identifies sender

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #28

Idea

• User u authenticates to Kerberos server
– Obtains ticket Tu,TGS for ticket granting service (TGS)

• User u wants to use service s:
– User sends authenticator Au, ticket Tu,TGS to TGS asking for ticket

for service
– TGS sends ticket Tu,s to user
– User sends Au, Tu,s to server as request to use s

• Details follow

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Ticket

• Credential saying issuer has identified ticket requester
• Example ticket issued to user u for service s

Tu,s = s || { u || u’s address || valid time || ku,s } ks

where:
– ku,s is session key for user and service
– Valid time is interval for which ticket valid
– u’s address may be IP address or something else

• Note: more fields, but not relevant here

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Authenticator

• Credential containing identity of sender of ticket
– Used to confirm sender is entity to which ticket was

issued
• Example: authenticator user u generates for

service s
Au,s = { u || generation time || kt } ku,s

where:
– kt is alternate session key
– Generation time is when authenticator generated

• Note: more fields, not relevant here

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Protocol

user Cathyuser || TGS

Cathy user{ ku,TGS } ku || Tu,TGS

user TGS
service || Au,TGS || Tu,TGS

user TGS
user || { ku,s } ku,TGS || Tu,s

user service
Au,s || Tu,s

user service
{ t + 1 } ku,s

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #32

Analysis

• First two steps get user ticket to use TGS
– User u can obtain session key only if u knows

key shared with Cathy
• Next four steps show how u gets and uses

ticket for service s
– Service s validates request by checking sender

(using Au,s) is same as entity ticket issued to
– Step 6 optional; used when u requests

confirmation

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Problems

• Relies on synchronized clocks
– If not synchronized and old tickets,

authenticators not cached, replay is possible
• Tickets have some fixed fields

– Dictionary attacks possible
– Kerberos 4 session keys weak (had much less

than 56 bits of randomness); researchers at
Purdue found them from tickets in minutes

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Public Key Key Exchange

• Here interchange keys known
– eA, eB Alice and Bob’s public keys known to all
– dA, dB Alice and Bob’s private keys known only to

owner
• Simple protocol

– ks is desired session key

Alice Bob
{ ks } eB

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Problem and Solution

• Vulnerable to forgery or replay
– Because eB known to anyone, Bob has no assurance

that Alice sent message
• Simple fix uses Alice’s private key

– ks is desired session key

Alice Bob
{ { ks } dA } eB

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #36

Notes

• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice versa
– If not, each must get it from public server
– If keys not bound to identity of owner, attacker Eve can launch a

man-in-the-middle attack (next slide; Cathy is public server
providing public keys)

• Solution to this (binding identity to keys) discussed later as public
key infrastructure (PKI)

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #37

Man-in-the-Middle Attack

Alice Cathysend Bob’s public key

Eve Cathysend Bob’s public key

Eve Cathy
eB

Alice
eE Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #38

Cryptographic Key Infrastructure

• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with principal
whose identity is bound to key

– Erroneous binding means no secrecy between principals
– Assume principal identified by an acceptable name

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #39

Certificates

• Create token (message) containing
– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC

April 26, 2005 ECS 153, Introduction to Computer
Security

Slide #40

Use

• Bob gets Alice’s certificate
– If he knows Cathy’s public key, he can decipher the

certificate
• When was certificate issued?
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to

validate certificate
– Problem pushed “up” a level
– Two approaches: Merkle’s tree, signature chains

