
May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Cryptographic Key Infrastructure

• Goal: bind identity to key
• Classical: not possible as all keys are shared

– Use protocols to agree on a shared key (see earlier)
• Public key: bind identity to public key

– Crucial as people will use key to communicate with principal
whose identity is bound to key

– Erroneous binding means no secrecy between principals
– Assume principal identified by an acceptable name

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Certificates

• Create token (message) containing
– Identity of principal (here, Alice)
– Corresponding public key
– Timestamp (when issued)
– Other information (perhaps identity of signer)

signed by trusted authority (here, Cathy)
CA = { eA || Alice || T } dC

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Use

• Bob gets Alice’s certificate
– If he knows Cathy’s public key, he can decipher the

certificate
• When was certificate issued?
• Is the principal Alice?

– Now Bob has Alice’s public key
• Problem: Bob needs Cathy’s public key to

validate certificate
– Problem pushed “up” a level
– Two approaches: Merkle’s tree, signature chains

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Certificate Signature Chains

• Create certificate
– Generate hash of certificate
– Encipher hash with issuer’s private key

• Validate
– Obtain issuer’s public key
– Decipher enciphered hash
– Recompute hash from certificate and compare

• Problem: getting issuer’s public key

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #5

X.509 Chains

• Some certificate components in X.509v3:
– Version
– Serial number
– Signature algorithm identifier: hash algorithm
– Issuer’s name; uniquely identifies issuer
– Interval of validity
– Subject’s name; uniquely identifies subject
– Subject’s public key
– Signature: enciphered hash

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #6

X.509 Certificate Validation

• Obtain issuer’s public key
– The one for the particular signature algorithm

• Decipher signature
– Gives hash of certificate

• Recompute hash from certificate and compare
– If they differ, there’s a problem

• Check interval of validity
– This confirms that certificate is current

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Issuers

• Certification Authority (CA): entity that
issues certificates
– Multiple issuers pose validation problem
– Alice’s CA is Cathy; Bob’s CA is Don; how

can Alice validate Bob’s certificate?
– Have Cathy and Don cross-certify

• Each issues certificate for the other

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #8

Validation and Cross-Certifying

• Certificates:
– Cathy<<Alice>>
– Dan<<Bob>
– Cathy<<Dan>>
– Dan<<Cathy>>

• Alice validates Bob’s certificate
– Alice obtains Cathy<<Dan>>
– Alice uses (known) public key of Cathy to validate

Cathy<<Dan>>
– Alice uses Cathy<<Dan>> to validate Dan<<Bob>>

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Digital Signature
• Construct that authenticated origin, contents of message in

a manner provable to a disinterested third party (“judge”)
• Sender cannot deny having sent message (service is

“nonrepudiation”)
– Limited to technical proofs

• Inability to deny one’s cryptographic key was used to sign
– One could claim the cryptographic key was stolen or compromised

• Legal proofs, etc., probably required; not dealt with here

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Common Error

• Classical: Alice, Bob share key k
– Alice sends m || { m } k to Bob

This is a digital signature
WRONGWRONG

This is not a digital signature
– Why? Third party cannot determine whether

Alice or Bob generated message

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Classical Digital Signatures
• Require trusted third party

– Alice, Bob each share keys with trusted party Cathy
• To resolve dispute, judge gets { m } kAlice, { m } kBob, and

has Cathy decipher them; if messages matched, contract
was signed

Alice Bob

Cathy Bob

Cathy Bob

{ m }kAlice

{ m }kAlice

{ m }kBob

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #12

Public Key Digital Signatures

• Alice’s keys are dAlice, eAlice

• Alice sends Bob
m || { m } dAlice

• In case of dispute, judge computes
{ { m } dAlice } eAlice

• and if it is m, Alice signed message
– She’s the only one who knows dAlice!

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #13

RSA Digital Signatures

• Use private key to encipher message
– Protocol for use is critical

• Key points:
– Never sign random documents, and when

signing, always sign hash and never document
• Mathematical properties can be turned against

signer
– Sign message first, then encipher

• Changing public keys causes forgery

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Attack #1
• Example: Alice, Bob communicating

– nA = 95, eA = 59, dA = 11
– nB = 77, eB = 53, dB = 17

• 26 contracts, numbered 00 to 25
– Alice has Bob sign 05 and 17:

• c = mdB mod nB = 0517 mod 77 = 3
• c = mdB mod nB = 1717 mod 77 = 19

– Alice computes 05×17 mod 77 = 08; corresponding signature is 03
×19 mod 77 = 57; claims Bob signed 08

– Judge computes ceB mod nB = 5753 mod 77 = 08
• Signature validated; Bob is toast

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Attack #2: Bob’s Revenge
• Bob, Alice agree to sign contract 06
• Alice enciphers, then signs:

(meB mod 77)dA mod nA = (0653 mod 77)11 mod 95 = 63
• Bob now changes his public key

– Computes r such that 13r mod 77 = 6; say, r = 59
– Computes reB mod φ(nB) = 59×53 mod 60 = 7
– Replace public key eB with 7, private key dB = 43

• Bob claims contract was 13. Judge computes:
– (6359 mod 95)43 mod 77 = 13
– Verified; now Alice is toast

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Basics

• Authentication: binding of identity to
subject
– Identity is that of external entity (my identity,

Matt, etc.)
– Subject is computer entity (process, etc.)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #17

Establishing Identity

• One or more of the following
– What entity knows (eg. password)
– What entity has (eg. badge, smart card)
– What entity is (eg. fingerprints, retinal

characteristics)
– Where entity is (eg. In front of a particular

terminal)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #18

Passwords

• Sequence of characters
– Examples: 10 digits, a string of letters, etc.
– Generated randomly, by user, by computer with user input

• Sequence of words
– Examples: pass-phrases

• Algorithms
– Examples: challenge-response, one-time passwords

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #19

Storage

• Store as cleartext
– If password file compromised, all passwords revealed

• Encipher file
– Need to have decipherment, encipherment keys in memory
– Reduces to previous problem

• Store one-way hash of password
– If file read, attacker must still guess passwords or invert the hash

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Example

• UNIX system standard hash function
– Hashes password into 11 char string using one of 4096 hash

functions
• As authentication system:

– A = { strings of 8 chars or less }
– C = { 2 char hash id || 11 char hash }
– F = { 4096 versions of modified DES }
– L = { login, su, … }
– S = { passwd, nispasswd, passwd+, … }

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Anatomy of Attacking

• Goal: find a ∈ A such that:
– For some f ∈ F, f(a) = c ∈ C
– c is associated with entity

• Two ways to determine whether a meets these
requirements:
– Direct approach: as above
– Indirect approach: as l(a) succeeds iff f(a) = c ∈ C for some c

associated with an entity, compute l(a)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Preventing Attacks

• How to prevent this:
– Hide one of a, f, or c

• Prevents obvious attack from above
• Example: UNIX/Linux shadow password files

– Hides c’s

– Block access to all l ∈ L or result of l(a)
• Prevents attacker from knowing if guess succeeded
• Example: preventing any logins to an account from

a network
– Prevents knowing results of l (or accessing l)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #23

Dictionary Attacks

• Trial-and-error from a list of potential
passwords
– Off-line: know f and c’s, and repeatedly try

different guesses g ∈ A until the list is done or
passwords guessed

• Examples: crack, john-the-ripper
– On-line: have access to functions in L and try

guesses g until some l(g) succeeds
• Examples: trying to log in by guessing a password

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Using Time

Anderson’s formula:
• P probability of guessing a password in

specified period of time
• G number of guesses tested in 1 time unit
• T number of time units
• N number of possible passwords (|A|)
• Then P ≥ TG/N

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #25

Example

• Goal
– Passwords drawn from a 96-char alphabet
– Can test 104 guesses per second
– Probability of a success to be 0.5 over a 365 day period
– What is minimum password length?

• Solution
– N ≥ TG/P = (365×24×60×60)×104/0.5 = 6.31×1011

– Choose s such that Σs
j=0 96j ≥ N

– So s ≥ 6, meaning passwords must be at least 6 chars
long

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #26

Approaches: Password Selection

• Random selection
– Any password from A equally likely to be

selected
• Pronounceable passwords
• User selection of passwords

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Pronounceable Passwords

• Generate phonemes randomly
– Phoneme is unit of sound, eg. cv, vc, cvc, vcv
– Examples: helgoret, juttelon are; przbqxdfl, zxrptglfn are not

• Problem: too few
• Solution: key crunching

– Run long key through hash function and convert to printable
sequence

– Use this sequence as password

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #28

User Selection
• Problem: people pick easy to guess passwords

– Based on account names, user names, computer names, place
names

– Dictionary words (also reversed, odd capitalizations, control
characters, “elite-speak”, conjugations or declensions, swear
words, Torah/Bible/Koran/… words)

– Too short, digits only, letters only
– License plates, acronyms, social security numbers
– Personal characteristics or foibles (pet names, nicknames, job

characteristics, etc.

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Picking Good Passwords
• “LlMm*2^Ap”

– Names of members of 2 families
• “OoHeØFSK”

– Second letter of each word of length 4 or more in third line of
third verse of Star-Spangled Banner, followed by “/”, followed by
author’s initials

• What’s good here may be bad there
– “DMC/MHmh” bad at Dartmouth (“Dartmouth Medical

Center/Mary Hitchcock memorial hospital”), ok here
• Why are these now bad passwords? 

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Proactive Password Checking

• Analyze proposed password for “goodness”
– Always invoked
– Can detect, reject bad passwords for an appropriate

definition of “bad”
– Discriminate on per-user, per-site basis
– Needs to do pattern matching on words
– Needs to execute subprograms and use results

• Spell checker, for example
– Easy to set up and integrate into password selection

system

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Example: OPUS

• Goal: check passwords against large dictionaries quickly
– Run each word of dictionary through k different hash functions h1,

…, hk producing values less than n
– Set bits h1, …, hk in OPUS dictionary
– To check new proposed word, generate bit vector and see if all

corresponding bits set
• If so, word is in one of the dictionaries to some degree of probability
• If not, it is not in the dictionaries

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #32

Example: passwd+

• Provides little language to describe proactive checking
– test length(“$p”) < 6

• If password under 6 characters, reject it
– test infile(“/usr/dict/words”, “$p”)

• If password in file /usr/dict/words, reject it
– test !inprog(“spell”, “$p”, “$p”)

• If password not in the output from program spell, given the password
as input, reject it (because it’s a properly spelled word)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Salting

• Goal: slow dictionary attacks
• Method: perturb hash function so that:

– Parameter controls which hash function is used
– Parameter differs for each password
– So given n password hashes, and therefore n

salts, need to hash guess n

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Examples

• Vanilla UNIX method
– Use DES to encipher 0 message with password

as key; iterate 25 times
– Perturb E table in DES in one of 4096 ways

• 12 bit salt flips entries 1–11 with entries 25–36

• Alternate methods
– Use salt as first part of input to hash function

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Guessing Through Login

• Cannot prevent these
– Otherwise, legitimate users cannot log in

• Make them slow
– Backoff
– Disconnection
– Disabling

• Be very careful with administrative accounts!
– Jailing

• Allow in, but restrict activities

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #36

Password Aging

• Force users to change passwords after some
time has expired
– How do you force users not to re-use

passwords?
• Record previous passwords
• Block changes for a period of time

– Give users time to think of good passwords
• Don’t force them to change before they can log in
• Warn them of expiration days in advance

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #37

Challenge-Response

• User, system share a secret function f (in practice, f is a
known function with unknown parameters, such as a
cryptographic key)

user systemrequest to authenticate

user systemrandom message r
(the challenge)

user systemf(r)
(the response)

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #38

Pass Algorithms

• Challenge-response with the function f itself a
secret
– Example:

• Challenge is a random string of characters such as “abcdefg”,
“ageksido”

• Response is some function of that string such as “bdf”, “gkip”
– Can alter algorithm based on ancillary information

• Network connection is as above, dial-up might require “aceg”,
“aesd”

– Usually used in conjunction with fixed, reusable
password

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #39

One-Time Passwords

• Password that can be used exactly once
– After use, it is immediately invalidated

• Challenge-response mechanism
– Challenge is number of authentications; response is password for

that particular number
• Problems

– Synchronization of user, system
– Generation of good random passwords
– Password distribution problem

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #40

S/Key

• One-time password scheme based on idea of
Lamport

• h one-way hash function (MD5 or SHA-1, for
example)

• User chooses initial seed k
• System calculates:

h(k) = k1, h(k1) = k2, …, h(kn–1) = kn

• Passwords are reverse order:
p1 = kn, p2 = kn–1, …, pn–1 = k2, pn = k1

May 3, 2005 ECS 153, Introduction to Computer
Security

Slide #41

S/Key Protocol

user system{ name }

user system{ i }

user system{ pi }

System stores maximum number of authentications n, number
of next authentication i, last correctly supplied password pi–1.

System computes h(pi) = h(kn–i+1) = kn–i = pi–1. If match with
what is stored, system replaces pi–1 with pi and increments i.

