
May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Amplifying

• Allows temporary increase of privileges
• Needed for modular programming

– Module pushes, pops data onto stack
module stack … endmodule.

– Variable x declared of type stack
var x: module;

– Only stack module can alter, read x
• So process doesn’t get capability, but needs it when x is

referenced—a problem!
– Solution: give process the required capabilities while it is in

module



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Examples

• HYDRA: templates
– Associated with each procedure, function in module
– Adds rights to process capability while the procedure or function

is being executed
– Rights deleted on exit

• Intel iAPX 432: access descriptors for objects
– These are really capabilities
– 1 bit in this controls amplification
– When ADT constructed, permission bits of type control object set

to what procedure needs
– On call, if amplification bit in this permission is set, the above bits

or’ed with rights in access descriptor of object being passed



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Revocation

• Scan all C-lists, remove relevant capabilities
– Far too expensive!

• Use indirection
– Each object has entry in a global object table
– Names in capabilities name the entry, not the object

• To revoke, zap the entry in the table
• Can have multiple entries for a single object to allow control of

different sets of rights and/or groups of users for each object
– Example: Amoeba: owner requests server change random number

in server table
• All capabilities for that object now invalid



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough

C-List
Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough

C-List

rw*lough

• Problems if you don’t control copying of capabilities

The capability to write file lough is Low, and Heidi is High
so she reads (copies) the capability; now she can write to a
Low file, violating the *-property!

Limits



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #5

Remedies

• Label capability itself
– Rights in capability depends on relation between its

compartment and that of object to which it refers
• In example, as as capability copied to High, and High

dominates object compartment (Low), write right removed

• Check to see if passing capability violates
security properties
– In example, it does, so copying refused

• Distinguish between “read” and “copy capability”
– Take-Grant Protection Model does this (“read”, “take”)



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #6

ACLs vs. Capabilities

• Both theoretically equivalent; consider 2 questions
1. Given a subject, what objects can it access, and how?
2. Given an object, what subjects can access it, and how?
– ACLs answer second easily; C-Lists, first

• Suggested that the second question, which in the
past has been of most interest, is the reason ACL-
based systems more common than capability-
based systems
– As first question becomes more important (in incident

response, for example), this may change



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Locks and Keys

• Associate information (lock) with object, information
(key) with subject
– Latter controls what the subject can access and how
– Subject presents key; if it corresponds to any of the locks on the

object, access granted
• This can be dynamic

– ACLs, C-Lists static and must be manually changed
– Locks and keys can change based on system constraints, other

factors (not necessarily manual)



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #8

Cryptographic Implementation

• Enciphering key is lock; deciphering key is
key
– Encipher object o; store Ek(o)
– Use subject’s key k′ to compute Dk′(Ek(o))
– Any of n can access o: store

o′ = (E1(o), …, En(o))
– Requires consent of all n to access o: store

o′ = (E1(E2(…(En(o))…))



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Example: IBM

• IBM 370: process gets access key; pages
get storage key and fetch bit
– Fetch bit clear: read access only
– Fetch bit set, access key 0: process can write to

(any) page
– Fetch bit set, access key matches storage key:

process can write to page
– Fetch bit set, access key non-zero and does not

match storage key: no access allowed



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Example: Cisco Router

• Dynamic access control lists
access-list 100 permit tcp any host 10.1.1.1 eq telnet
access-list 100 dynamic test timeout 180 permit ip any host \

10.1.2.3 time-range my-time
time-range my-time

periodic weekdays 9:00 to 17:00
line vty 0 2

login local
autocommand access-enable host timeout 10

• Limits external access to 10.1.2.3 to 9AM–5PM
– Adds temporary entry for connecting host once user

supplies name, password to router
– Connections good for 180 minutes

• Drops access control entry after that



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Type Checking

• Lock is type, key is operation
– Example: UNIX system call write can’t work

on directory object but does work on file
– Example: split I&D space of PDP-11
– Example: countering buffer overflow attacks

on the stack by putting stack on non-
executable pages/segments

• Then code uploaded to buffer won’t execute
• Does not stop other forms of this attack, though …



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #12

More Examples

• LOCK system:
– Compiler produces “data”
– Trusted process must change this type to “executable” becore

program can be executed
• Sidewinder firewall

– Subjects assigned domain, objects assigned type
• Example: ingress packets get one type, egress packets another

– All actions controlled by type, so ingress packets cannot
masquerade as egress packets (and vice versa)



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #13

Ring-Based Access Control

…Privileges
increase 0 1 n

• Process (segment) accesses
another segment

• Read
• Execute

• Gate is an entry point for
calling segment

• Rights:
• r read
• w write
• a append
• e execute



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Reading/Writing/Appending

• Procedure executing in ring r
• Data segment with access bracket (a1, a2)
• Mandatory access rule

– r ≤ a1 allow access
– a1 < r ≤ a2 allow r access; not w, a access
– a2 < r deny all access



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Executing

• Procedure executing in ring r
• Call procedure in segment with access bracket

(a1, a2) and call bracket (a2, a3)
– Often written (a1, a2 , a3 )

• Mandatory access rule
– r < a1 allow access; ring-crossing fault
– a1 ≤ r ≤ a2 allow access; no ring-crossing fault
– a2 < r ≤ a3 allow access if through valid gate
– a3 < r deny all access



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Versions

• Multics
– 8 rings (from 0 to 7)

• Digital Equipment’s VAX
– 4 levels of privilege: user, monitor, executive,

kernel
• Older systems

– 2 levels of privilege: user, supervisor



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #17

PACLs

• Propagated Access Control List
– Implements ORGON

• Creator kept with PACL, copies
– Only owner can change PACL
– Subject reads object: object’s PACL associated with

subject
– Subject writes object: subject’s PACL associated with

object
• Notation: PACLs means s created object;

PACL(e) is PACL associated with entity e



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #18

Multiple Creators
• Betty reads Ann’s file dates

PACL(Betty) = PACLBetty ∩ PACL(dates)
= PACLBetty ∩ PACLAnn

• Betty creates file dc
PACL(dc) = PACLBetty ∩ PACLAnn

• PACLBetty allows Char to access objects, but PACLAnn
does not; both allow June to access objects
– June can read dc
– Char cannot read dc



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #19

Assurance Overview

• Trust
• Problems from lack of assurance
• Types of assurance
• Life cycle and assurance
• Waterfall life cycle model
• Other life cycle models



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Trust

• Trustworthy entity has sufficient credible
evidence leading one to believe that the system
will meet a set of requirements

• Trust is a measure of trustworthiness relying on
the evidence

• Assurance is confidence that an entity meets its
security requirements based on evidence provided
by applying assurance techniques



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Relationships

Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Problem Sources
1. Requirements definitions, omissions, and mistakes
2. System design flaws
3. Hardware implementation flaws, such as wiring and chip flaws
4. Software implementation errors, program bugs, and compiler bugs
5. System use and operation errors and inadvertent mistakes
6. Willful system misuse
7. Hardware, communication, or other equipment malfunction
8. Environmental problems, natural causes, and acts of God
9. Evolution, maintenance, faulty upgrades, and decommissions



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #23

Examples
• Challenger explosion

– Sensors removed from booster rockets to meet accelerated launch
schedule

• Deaths from faulty radiation therapy system
– Hardware safety interlock removed
– Flaws in software design

• Bell V22 Osprey crashes
– Failure to correct for malfunctioning components; two faulty ones

could outvote a third
• Intel 486 chip

– Bug in trigonometric functions



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Role of Requirements

• Requirements are statements of goals that
must be met
– Vary from high-level, generic issues to low-

level, concrete issues
• Security objectives are high-level security

issues
• Security requirements are specific, concrete

issues



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #25

Types of Assurance

• Policy assurance is evidence establishing security
requirements in policy is complete, consistent,
technically sound

• Design assurance is evidence establishing design
sufficient to meet requirements of security policy

• Implementation assurance is evidence
establishing implementation consistent with
security requirements of security policy



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #26

Types of Assurance

• Operational assurance is evidence
establishing system sustains the security
policy requirements during installation,
configuration, and day-to-day operation
– Also called administrative assurance



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Life Cycle

Security requirements

Design

Implementation

1

3
2

4

Assurance
justification

Design and
implementation
refinement



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #28

Life Cycle

• Conception
• Manufacture
• Deployment
• Fielded Product Life



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Conception
• Idea

– Decisions to pursue it
• Proof of concept

– See if idea has merit
• High-level requirements analysis

– What does “secure” mean for this concept?
– Is it possible for this concept to meet this meaning of security?
– Is the organization willing to support the additional resources

required to make this concept meet this meaning of security?



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Manufacture

• Develop detailed plans for each group
involved
– May depend on use; internal product requires

no sales
• Implement the plans to create entity

– Includes decisions whether to proceed, for
example due to market needs



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Deployment

• Delivery
– Assure that correct masters are delivered to

production and protected
– Distribute to customers, sales organizations

• Installation and configuration
– Ensure product works appropriately for

specific environment into which it is installed
– Service people know security procedures



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #32

Fielded Product Life

• Routine maintenance, patching
– Responsibility of engineering in small

organizations
– Responsibility may be in different group than

one that manufactures product
• Customer service, support organizations
• Retirement or decommission of product



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Waterfall Life Cycle Model

• Requirements definition and analysis
– Functional and non-functional
– General (for customer), specifications

• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Relationship of Stages

Requirements
definition and
analysis

System and
software
design

Implementation
and unit
testing Integration

and system
testing

Operation
and
maintenance



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Models

• Exploratory programming
– Develop working system quickly
– Used when detailed requirements specification cannot

be formulated in advance, and adequacy is goal
– No requirements or design specification, so low

assurance
• Prototyping

– Objective is to establish system requirements
– Future iterations (after first) allow assurance techniques



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #36

Models

• Formal transformation
– Create formal specification
– Translate it into program using correctness-preserving

transformations
– Very conducive to assurance methods

• System assembly from reusable components
– Depends on whether components are trusted
– Must assure connections, composition as well
– Very complex, difficult to assure



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #37

Models

• Extreme programming
– Rapid prototyping and “best practices”
– Project driven by business decisions
– Requirements open until project complete
– Programmers work in teams
– Components tested, integrated several times a day
– Objective is to get system into production as quickly as

possible, then enhance it
– Evidence adduced after development needed for

assurance



May 10, 2005 ECS 153, Introduction to Computer
Security

Slide #38

Key Points

• Assurance critical for determining
trustworthiness of systems

• Different levels of assurance, from
informal evidence to rigorous mathematical
evidence

• Assurance needed at all stages of system
life cycle


