
May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Models

• Extreme programming
– Rapid prototyping and “best practices”
– Project driven by business decisions
– Requirements open until project complete
– Programmers work in teams
– Components tested, integrated several times a day
– Objective is to get system into production as quickly as

possible, then enhance it
– Evidence adduced after development needed for

assurance

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Security: Built In or Add On?

• Think of security as you do performance
– You don’t build a system, then add in

performance later
• Can “tweak” system to improve performance a little
• Much more effective to change fundamental

algorithms, design
• You need to design it in

– Otherwise, system lacks fundamental and
structural concepts for high assurance

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Reference Validation Mechanism

• Reference monitor is access control concept of an
abstract machine that mediates all accesses to
objects by subjects

• Reference validation mechanism (RVM) is an
implementation of the reference monitor concept.
– Tamperproof
– Complete (always invoked and can never be bypassed)
– Simple (small enough to be subject to analysis and

testing, the completeness of which can be assured)
• Last engenders trust by providing assurance of correctness

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Examples

• Security kernel combines hardware and
software to implement reference monitor

• Trusted computing base (TCB) is all
protection mechanisms within a system
responsible for enforcing security policy
– Includes hardware and software
– Generalizes notion of security kernel

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #5

Adding On Security

• Key to problem: analysis and testing
• Designing in mechanisms allow assurance at all

levels
– Too many features adds complexity, complicates

analysis
• Adding in mechanisms makes assurance hard

– Gap in abstraction from requirements to design may
prevent complete requirements testing

– May be spread throughout system (analysis hard)
– Assurance may be limited to test results

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #6

Example

• 2 AT&T products
– Add mandatory controls to UNIX system
– SV/MLS

• Add MAC to UNIX System V Release 3.2
– SVR4.1ES

• Re-architect UNIX system to support MAC

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Comparison

• Architecting of System
– SV/MLS: used existing kernel modular

structure; no implementation of least privilege
– SVR4.1ES: restructured kernel to make it

highly modular and incorporated least privilege

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #8

Comparison

• File Attributes (inodes)
– SV/MLS added separate table for MAC labels, DAC permissions

• UNIX inodes have no space for labels; pointer to table added
• Problem: 2 accesses needed to check permissions
• Problem: possible inconsistency when permissions changed
• Corrupted table causes corrupted permissions

– SVR4.1ES defined new inode structure
• Included MAC labels
• Only 1 access needed to check permissions

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Key Points

• Assurance critical for determining trustworthiness of
systems

• Different levels of assurance, from informal evidence to
rigorous mathematical evidence

• Assurance needed at all stages of system life cycle
• Building security in is more effective than adding it later

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Malcious Logic Overview

• Defining malicious logic
• Types

– Trojan horses
– Computer viruses and worms
– Other types

• Defenses
– Properties of malicious logic
– Trust

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Malicious Logic

• Set of instructions that cause site security
policy to be violated

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #12

Example

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy
chmod u+s,o+x /tmp/.xyzzy
rm ./ls
ls $*

• Place in program called “ls” and trick
someone into executing it

• You now have a setuid-to-them shell!

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #13

Trojan Horse

• Program with an overt purpose (known to
user) and a covert purpose (unknown to
user)
– Often called a Trojan
– Named by Dan Edwards in Anderson Report

• Example: previous script is Trojan horse
– Overt purpose: list files in directory
– Covert purpose: create setuid shell

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Example: NetBus

• Designed for Windows NT system
• Victim uploads and installs this

– Usually disguised as a game program, or in one
• Acts as a server, accepting and executing

commands for remote administrator
– This includes intercepting keystrokes and

mouse motions and sending them to attacker
– Also allows attacker to upload, download files

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Replicating Trojan Horse
• Trojan horse that makes copies of itself

– Also called propagating Trojan horse
– Early version of animal game used this to delete copies of itself

• Hard to detect
– 1976: Karger and Schell suggested modifying compiler to include Trojan

horse that copied itself into specific programs including later version of
the compiler

– 1980s: Thompson implements this

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Thompson's Compiler
• Modify the compiler so that when it compiles login , login

accepts the user's correct password or a fixed password
(the same one for all users)

• Then modify the compiler again, so when it compiles a
new version of the compiler, the extra code to do the first
step is automatically inserted

• Recompile the compiler
• Delete the source containing the modification and put the

undoctored source back

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #17

login source correct compiler login executable

user password

login source doctored compiler login executable

magic password
user password or

logged in

logged in

The Login Program

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #18

compiler source correct compiler compiler executable

login source

compiler source doctored compiler compiler executable

correct login executable

login source

rigged login executable

The Compiler

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #19

Comments
• Great pains taken to ensure second version of compiler never released

– Finally deleted when a new compiler executable from a different system
overwrote the doctored compiler

• The point: no amount of source-level verification or scrutiny will
protect you from using untrusted code
– Also: having source code helps, but does not ensure you’re safe

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Computer Virus
• Program that inserts itself into one or more files and performs some

action
– Insertion phase is inserting itself into file
– Execution phase is performing some (possibly null) action

• Insertion phase must be present
– Need not always be executed
– Lehigh virus inserted itself into boot file only if boot file not infected

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Pseudocode
beginvirus:
if spread-condition then begin
for some set of target files do begin
if target is not infected then begin
determine where to place virus instructions

copy instructions from beginvirus to endvirus

into target

alter target to execute added instructions

end;
end;

end;
perform some action(s)

goto beginning of infected program
endvirus:

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Trojan Horse Or Not?
• Yes

– Overt action = infected program’s actions
– Covert action = virus’ actions (infect, execute)

• No
– Overt purpose = virus’ actions (infect, execute)
– Covert purpose = none

• Semantic, philosophical differences
– Defenses against Trojan horse also inhibit computer viruses

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #23

History

• Programmers for Apple II wrote some
– Not called viruses; very experimental

• Fred Cohen
– Graduate student who described them
– Teacher (Adleman) named it “computer virus”
– Tested idea on UNIX systems and UNIVAC

1108 system

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Cohen’s Experiments
• UNIX systems: goal was to get superuser privileges

– Max time 60m, min time 5m, average 30m
– Virus small, so no degrading of response time
– Virus tagged, so it could be removed quickly

• UNIVAC 1108 system: goal was to spread
– Implemented simple security property of Bell-LaPadula
– As writing not inhibited (no *-property enforcement), viruses spread

easily

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #25

First Reports

• Brain (Pakistani) virus (1986)
– Written for IBM PCs
– Alters boot sectors of floppies, spreads to other

floppies
• MacMag Peace virus (1987)

– Written for Macintosh
– Prints “universal message of peace” on March

2, 1988 and deletes itself

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #26

More Reports

• Duff’s experiments (1987)
– Small virus placed on UNIX system, spread to

46 systems in 8 days
– Wrote a Bourne shell script virus

• Highland’s Lotus 1-2-3 virus (1989)
– Stored as a set of commands in a spreadsheet

and loaded when spreadsheet opened
– Changed a value in a specific row, column and

spread to other files

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Types of Viruses
• Boot sector infectors
• Executable infectors
• Multipartite viruses
• TSR viruses
• Stealth viruses
• Encrypted viruses
• Polymorphic viruses
• Macro viruses

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #28

Boot Sector Infectors
• A virus that inserts itself into the boot sector of a disk

– Section of disk containing code
– Executed when system first “sees” the disk

• Including at boot time …
• Example: Brain virus

– Moves disk interrupt vector from 13H to 6DH
– Sets new interrupt vector to invoke Brain virus
– When new floppy seen, check for 1234H at location 4

• If not there, copies itself onto disk after saving original boot block

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Executable Infectors

• A virus that infects executable programs
– Can infect either .EXE or .COM on PCs
– May prepend itself (as shown) or put itself anywhere,

fixing up binary so it is executed at some point

Header Executable code and data

0 100 1000

Header Executable code and data

0 100 1000 1100

Virus code

200

First program instruction to be executed

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Executable Infectors (con’t)
• Jerusalem (Israeli) virus

– Checks if system infected
• If not, set up to respond to requests to execute files

– Checks date
• If not 1987 or Friday 13th, set up to respond to clock interrupts and

then run program
• Otherwise, set destructive flag; will delete, not infect, files

– Then: check all calls asking files to be executed
• Do nothing for COMND.COM
• Otherwise, infect or delete

– Error: doesn’t set signature when .EXE executes
• So .EXE files continually reinfected

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Multipartite Viruses

• A virus that can infect either boot sectors or
executables

• Typically, two parts
– One part boot sector infector
– Other part executable infector

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #32

TSR Viruses

• A virus that stays active in memory after
the application (or bootstrapping, or disk
mounting) is completed
– TSR is “Terminate and Stay Resident”

• Examples: Brain, Jerusalem viruses
– Stay in memory after program or disk mount is

completed

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Stealth Viruses

• A virus that conceals infection of files
• Example: IDF virus modifies DOS service

interrupt handler as follows:
– Request for file length: return length of

uninfected file
– Request to open file: temporarily disinfect file,

and reinfect on closing
– Request to load file for execution: load

infected file

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Encrypted Viruses

• A virus that is enciphered except for a small
deciphering routine
– Detecting virus by signature now much harder as most

of virus is enciphered

Virus code Enciphered virus codeDeciphering
routine

Deciphering key

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Example
(* Decryption code of the 1260 virus *)
(* initialize the registers with the keys *)
rA = k1; rB = k2;
(* initialize rC with the virus;
 starts at sov, ends at eov *)
rC = sov;
(* the encipherment loop *)
while (rC != eov) do begin

(* encipher the byte of the message *)
(*rC) = (*rC) xor rA xor rB;
(* advance all the counters *)
rC = rC + 1;
rA = rA + 1;

end

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #36

Polymorphic Viruses
• A virus that changes its form each time it inserts itself into

another program
• Idea is to prevent signature detection by changing the

“signature” or instructions used for deciphering routine
• At instruction level: substitute instructions
• At algorithm level: different algorithms to achieve the

same purpose
• Toolkits to make these exist (Mutation Engine, Trident

Polymorphic Engine)

May 12, 2005 ECS 153, Introduction to Computer
Security

Slide #37

Example
• These are different instructions (with different bit patterns) but have

the same effect:
– add 0 to register
– subtract 0 from register
– xor 0 with register
– no-op

• Polymorphic virus would pick randomly from among these
instructions

