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Computer Worms
• A program that copies itself from one computer to another
• Origins: distributed computations

– Schoch and Hupp: animations, broadcast messages
– Segment: part of program copied onto workstation
– Segment processes data, communicates with worm’s controller
– Any activity on workstation caused segment to shut down
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Example: Internet Worm of 1988
• Targeted Berkeley, Sun UNIX systems

– Used virus-like attack to inject instructions into running program
and run them

– To recover, had to disconnect system from Internet and reboot
– To prevent re-infection, several critical programs had to be

patched, recompiled, and reinstalled
• Analysts had to disassemble it to uncover function
• Disabled several thousand systems in 6 or so hours
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Example: Christmas Worm
• Distributed in 1987, designed for IBM networks
• Electronic letter instructing recipient to save it and run it

as a program
– Drew Christmas tree, printed “Merry Christmas!”
– Also checked address book, list of previously received email and

sent copies to each address
• Shut down several IBM networks
• Really, a macro worm

– Written in a command language that was interpreted
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Rabbits, Bacteria
• A program that absorbs all of some class of resources
• Example: for UNIX system, shell commands:

while true
do

mkdir x
chdir x

done

• Exhausts either disk space or file allocation table (inode)
space
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Logic Bombs
• A program that performs an action that violates the site security policy

when some external event occurs
• Example: program that deletes company’s payroll records when one

particular record is deleted
– The “particular record” is usually that of the person writing the logic

bomb
– Idea is if (when) he or she is fired, and the payroll record deleted, the

company loses all those records
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Defenses

• Distinguish between data, instructions
• Limit objects accessible to processes
• Inhibit sharing
• Detect altering of files
• Detect actions beyond specifications
• Analyze statistical characteristics
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Data vs. Instructions
• Malicious logic is both

– Virus: written to program (data); then executes (instructions)
• Approach: treat “data” and “instructions” as separate types, and

require certifying authority to approve conversion
– Keys are assumption that certifying authority will not make mistakes and

assumption that tools, supporting infrastructure used in certifying process
are not corrupt
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Example: LOCK

• Logical Coprocessor Kernel
– Designed to be certified at TCSEC A1 level

• Compiled programs are type “data”
– Sequence of specific, auditable events required

to change type to “executable”
• Cannot modify “executable” objects

– So viruses can’t insert themselves into
programs (no infection phase)
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Example: Duff and UNIX

• Observation: users with execute permission
usually have read permission, too
– So files with “execute” permission have type

“executable”; those without it, type “data”
– Executable files can be altered, but type

immediately changed to “data”
• Implemented by turning off execute permission
• Certifier can change them back

– So virus can spread only if run as certifier
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Limiting Accessibility

• Basis: a user (unknowingly) executes
malicious logic, which then executes with
all that user’s privileges
– Limiting accessibility of objects should limit

spread of malicious logic and effects of its
actions

• Approach draws on mechanisms for
confinement
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Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):

– Initially, all info x has fd(x) = 0
– Whenever info y is shared, fd(y) increases by 1
– Whenever y1, …, yn used as input to compute

z, fd(z) = max(fd(y1), …, fd(yn))
• Information x accessible if and only if for

some parameter V, fd(x) < V
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Example
• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P

– P tries to write to Bill’s program Q
• Works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
– Q tries to write to Cathy’s program R

• Fails, as fd(Q) = 1, so fd(R) would be 2
• Problem: if Cathy executes P, R can be infected

– So, does not stop spread; slows it down greatly, though
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Implementation Issues
• Metric associated with information, not objects

– You can tag files with metric, but how do you tag the information in
them?

– This inhibits sharing
• To stop spread, make V = 0

– Disallows sharing
– Also defeats purpose of multi-user systems, and is crippling in scientific

and developmental environments
• Sharing is critical here
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Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so

it can only perform its function
– Warning: if that function requires it to write, it

can write anything
– But you can make sure it writes only to those

objects you expect
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Example: ACLs and C-Lists
• s1 owns file f1 and s2 owns program p2 and file f3

– Suppose s1 can read, write f1, execute p2, write f3
– Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
– p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write
to f3

– Ideally, p12 has capability { (s1, p2, x ) } so no problem
• In practice, p12 inherits s1’s rights—bad! Note s1 does not own f3, so

can’t change its rights over f3

• Solution: restrict access by others
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Authorization Denial Subset

• Defined for each user si
• Contains ACL entries that others cannot

exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }

– So when p12 tries to write to f3, as p12 owned
by s1 and f3 owned by s2, system denies access

• Problem: how do you decide what should
be in your authorization denial subset?



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #17

Karger’s Scheme
• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if

requested file access reasonable
– Sits between kernel and application

• Example: UNIX C compiler
– Reads from files with names ending in “.c”, “.h”
– Writes to files with names beginning with “/tmp/ctm” and

assembly files with names ending in “.s”
• When subsystem invoked, if C compiler tries to write to

“.c” file, request rejected
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Lai and Gray
• Implemented modified version of Karger’s scheme on

UNIX system
– Allow programs to access (read or write) files named on command

line
– Prevent access to other files

• Two types of processes
– Trusted (no access checks or restrictions)
– Untrusted (valid access list controls access)

• VAL initialized to command line arguments plus any temporary files
that the process creates
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File Access Requests
1. If file on VAL, use effective UID/GID of process to

determine if access allowed
2. If access requested is read and file is world-readable,

allow access
3. If process creating file, effective UID/GID controls

allowing creation
– Enter file into VAL as NNA (new non-argument); set

permissions so no other process can read file
4. Ask user. If yes, effective UID/GID controls allowing

access; if no, deny access
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Example
• Assembler invoked from compiler

as x.s /tmp/ctm2345

and creates temp file /tmp/as1111
– VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
– On creation, file inaccessible to all except creating user so attacker

cannot read it (rule 3)
– If file created already and assembler tries to write to it, user is

asked (rule 4), thereby revealing Trojan horse
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Trusted Programs
• No VALs applied here

– UNIX command interpreters
• csh, sh

– Program that spawn them
• getty, login

– Programs that access file system recursively
• ar, chgrp, chown, diff, du, dump, find, ls, restore, tar

– Programs that often access files not in argument list
• binmail, cpp, dbx, mail, make, script, vi

– Various network daemons
• fingerd, ftpd, sendmail, talkd, telnetd, tftpd
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Guardians, Watchdogs

• System intercepts request to open file
• Program invoked to determine if access is

to be allowed
– These are guardians or watchdogs

• Effectively redefines system (or library)
calls
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Trust
• Trust the user to take explicit actions to limit their

process’ protection domain sufficiently
– That is, enforce least privilege correctly

• Trust mechanisms to describe programs’ expected actions
sufficiently for descriptions to be applied, and to handle
commands without such descriptions properly

• Trust specific programs and kernel
– Problem: these are usually the first programs malicious logic attack
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Sandboxing

• Sandboxes, virtual machines also restrict
rights
– Modify program by inserting instructions to

cause traps when violation of policy
– Replace dynamic load libraries with

instrumented routines
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Example: Race Conditions

• Occur when successive system calls operate on object
– Both calls identify object by name
– Rebind name to different object between calls

• Sandbox: instrument calls:
– Unique identifier (inode) saved on first call
– On second call, inode of named file compared to that of first call

• If they differ, potential attack underway …
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Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of

shared procedure in memory
– Master directory associates unique owner with

each procedure, and with each user a list of
other users the first trusts

– Before executing any procedure, system
checks that user executing procedure trusts
procedure owner
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Multilevel Policies

• Put programs at the lowest security level,
all subjects at higher levels
– By *-property, nothing can write to those

programs
– By ss-property, anything can read (and

execute) those programs
• Example: DG/UX system

– All executables in “virus protection region”
below user and administrative regions
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Detect Alteration of Files

• Compute manipulation detection code (MDC) to generate
signature block for each file, and save it

• Later, recompute MDC and compare to stored MDC
– If different, file has changed

• Example: tripwire
– Signature consists of file attributes, cryptographic checksums

chosen from among MD4, MD5, HAVAL, SHS, CRC-16, CRC-
32, etc.)
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Assumptions

• Files do not contain malicious logic when original
signature block generated

• Pozzo & Grey: implement Biba’s model on
LOCUS to make assumption explicit
– Credibility ratings assign trustworthiness numbers

from 0 (untrusted) to n (signed, fully trusted)
– Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk
level

• If credibility rating < risk level, must use special command to
run program
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Antivirus Programs

• Look for specific sequences of bytes (called
“virus signature” in file
– If found, warn user and/or disinfect file

• Each agent must look for known set of
viruses

• Cannot deal with viruses not yet analyzed
– Due in part to undecidability of whether a

generic program is a virus
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Detect Actions Beyond Spec

• Treat execution, infection as errors and
apply fault tolerant techniques

• Example: break program into sequences of
nonbranching instructions
– Checksum each sequence, encrypt result
– When run, processor recomputes checksum,

and at each branch co-processor compares
computed checksum with stored one

• If different, error occurred
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N-Version Programming
• Implement several different versions of algorithm
• Run them concurrently

– Check intermediate results periodically
– If disagreement, majority wins

• Assumptions
– Majority of programs not infected
– Underlying operating system secure
– Different algorithms with enough equal intermediate results may

be infeasible
• Especially for malicious logic, where you would check file accesses
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Proof-Carrying Code
• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this

requirement
– Proof integrated with executable code
– Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs

300–900 bytes, validated in 0.3 –1.3 ms
– Startup cost higher, runtime cost considerably shorter
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Detecting Statistical Changes

• Example: application had 3 programmers working on it,
but statistical analysis shows code from a fourth
person—may be from a Trojan horse or virus!

• Other attributes: more conditionals than in original; look
for identical sequences of bytes not common to any
library routine; increases in file size, frequency of writing
to executables, etc.
– Denning: use intrusion detection system to detect these
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Key Points

• A perplexing problem
– How do you tell what the user asked for is not

what the user intended?
• Strong typing leads to separating data,

instructions
• File scanners most popular anti-virus agents

– Must be updated as new viruses come out


