
May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Computer Worms
• A program that copies itself from one computer to another
• Origins: distributed computations

– Schoch and Hupp: animations, broadcast messages
– Segment: part of program copied onto workstation
– Segment processes data, communicates with worm’s controller
– Any activity on workstation caused segment to shut down



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Example: Internet Worm of 1988
• Targeted Berkeley, Sun UNIX systems

– Used virus-like attack to inject instructions into running program
and run them

– To recover, had to disconnect system from Internet and reboot
– To prevent re-infection, several critical programs had to be

patched, recompiled, and reinstalled
• Analysts had to disassemble it to uncover function
• Disabled several thousand systems in 6 or so hours



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Example: Christmas Worm
• Distributed in 1987, designed for IBM networks
• Electronic letter instructing recipient to save it and run it

as a program
– Drew Christmas tree, printed “Merry Christmas!”
– Also checked address book, list of previously received email and

sent copies to each address
• Shut down several IBM networks
• Really, a macro worm

– Written in a command language that was interpreted



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Rabbits, Bacteria
• A program that absorbs all of some class of resources
• Example: for UNIX system, shell commands:

while true
do

mkdir x
chdir x

done

• Exhausts either disk space or file allocation table (inode)
space



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #5

Logic Bombs
• A program that performs an action that violates the site security policy

when some external event occurs
• Example: program that deletes company’s payroll records when one

particular record is deleted
– The “particular record” is usually that of the person writing the logic

bomb
– Idea is if (when) he or she is fired, and the payroll record deleted, the

company loses all those records



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #6

Defenses

• Distinguish between data, instructions
• Limit objects accessible to processes
• Inhibit sharing
• Detect altering of files
• Detect actions beyond specifications
• Analyze statistical characteristics



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Data vs. Instructions
• Malicious logic is both

– Virus: written to program (data); then executes (instructions)
• Approach: treat “data” and “instructions” as separate types, and

require certifying authority to approve conversion
– Keys are assumption that certifying authority will not make mistakes and

assumption that tools, supporting infrastructure used in certifying process
are not corrupt



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #8

Example: LOCK

• Logical Coprocessor Kernel
– Designed to be certified at TCSEC A1 level

• Compiled programs are type “data”
– Sequence of specific, auditable events required

to change type to “executable”
• Cannot modify “executable” objects

– So viruses can’t insert themselves into
programs (no infection phase)



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Example: Duff and UNIX

• Observation: users with execute permission
usually have read permission, too
– So files with “execute” permission have type

“executable”; those without it, type “data”
– Executable files can be altered, but type

immediately changed to “data”
• Implemented by turning off execute permission
• Certifier can change them back

– So virus can spread only if run as certifier



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Limiting Accessibility

• Basis: a user (unknowingly) executes
malicious logic, which then executes with
all that user’s privileges
– Limiting accessibility of objects should limit

spread of malicious logic and effects of its
actions

• Approach draws on mechanisms for
confinement



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):

– Initially, all info x has fd(x) = 0
– Whenever info y is shared, fd(y) increases by 1
– Whenever y1, …, yn used as input to compute

z, fd(z) = max(fd(y1), …, fd(yn))
• Information x accessible if and only if for

some parameter V, fd(x) < V



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #12

Example
• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P

– P tries to write to Bill’s program Q
• Works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
– Q tries to write to Cathy’s program R

• Fails, as fd(Q) = 1, so fd(R) would be 2
• Problem: if Cathy executes P, R can be infected

– So, does not stop spread; slows it down greatly, though



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #13

Implementation Issues
• Metric associated with information, not objects

– You can tag files with metric, but how do you tag the information in
them?

– This inhibits sharing
• To stop spread, make V = 0

– Disallows sharing
– Also defeats purpose of multi-user systems, and is crippling in scientific

and developmental environments
• Sharing is critical here



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so

it can only perform its function
– Warning: if that function requires it to write, it

can write anything
– But you can make sure it writes only to those

objects you expect



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Example: ACLs and C-Lists
• s1 owns file f1 and s2 owns program p2 and file f3

– Suppose s1 can read, write f1, execute p2, write f3
– Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
– p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write
to f3

– Ideally, p12 has capability { (s1, p2, x ) } so no problem
• In practice, p12 inherits s1’s rights—bad! Note s1 does not own f3, so

can’t change its rights over f3

• Solution: restrict access by others



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Authorization Denial Subset

• Defined for each user si
• Contains ACL entries that others cannot

exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }

– So when p12 tries to write to f3, as p12 owned
by s1 and f3 owned by s2, system denies access

• Problem: how do you decide what should
be in your authorization denial subset?



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #17

Karger’s Scheme
• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if

requested file access reasonable
– Sits between kernel and application

• Example: UNIX C compiler
– Reads from files with names ending in “.c”, “.h”
– Writes to files with names beginning with “/tmp/ctm” and

assembly files with names ending in “.s”
• When subsystem invoked, if C compiler tries to write to

“.c” file, request rejected



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #18

Lai and Gray
• Implemented modified version of Karger’s scheme on

UNIX system
– Allow programs to access (read or write) files named on command

line
– Prevent access to other files

• Two types of processes
– Trusted (no access checks or restrictions)
– Untrusted (valid access list controls access)

• VAL initialized to command line arguments plus any temporary files
that the process creates



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #19

File Access Requests
1. If file on VAL, use effective UID/GID of process to

determine if access allowed
2. If access requested is read and file is world-readable,

allow access
3. If process creating file, effective UID/GID controls

allowing creation
– Enter file into VAL as NNA (new non-argument); set

permissions so no other process can read file
4. Ask user. If yes, effective UID/GID controls allowing

access; if no, deny access



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Example
• Assembler invoked from compiler

as x.s /tmp/ctm2345

and creates temp file /tmp/as1111
– VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
– On creation, file inaccessible to all except creating user so attacker

cannot read it (rule 3)
– If file created already and assembler tries to write to it, user is

asked (rule 4), thereby revealing Trojan horse



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Trusted Programs
• No VALs applied here

– UNIX command interpreters
• csh, sh

– Program that spawn them
• getty, login

– Programs that access file system recursively
• ar, chgrp, chown, diff, du, dump, find, ls, restore, tar

– Programs that often access files not in argument list
• binmail, cpp, dbx, mail, make, script, vi

– Various network daemons
• fingerd, ftpd, sendmail, talkd, telnetd, tftpd



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Guardians, Watchdogs

• System intercepts request to open file
• Program invoked to determine if access is

to be allowed
– These are guardians or watchdogs

• Effectively redefines system (or library)
calls



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #23

Trust
• Trust the user to take explicit actions to limit their

process’ protection domain sufficiently
– That is, enforce least privilege correctly

• Trust mechanisms to describe programs’ expected actions
sufficiently for descriptions to be applied, and to handle
commands without such descriptions properly

• Trust specific programs and kernel
– Problem: these are usually the first programs malicious logic attack



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Sandboxing

• Sandboxes, virtual machines also restrict
rights
– Modify program by inserting instructions to

cause traps when violation of policy
– Replace dynamic load libraries with

instrumented routines



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #25

Example: Race Conditions

• Occur when successive system calls operate on object
– Both calls identify object by name
– Rebind name to different object between calls

• Sandbox: instrument calls:
– Unique identifier (inode) saved on first call
– On second call, inode of named file compared to that of first call

• If they differ, potential attack underway …



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #26

Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of

shared procedure in memory
– Master directory associates unique owner with

each procedure, and with each user a list of
other users the first trusts

– Before executing any procedure, system
checks that user executing procedure trusts
procedure owner



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Multilevel Policies

• Put programs at the lowest security level,
all subjects at higher levels
– By *-property, nothing can write to those

programs
– By ss-property, anything can read (and

execute) those programs
• Example: DG/UX system

– All executables in “virus protection region”
below user and administrative regions



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #28

Detect Alteration of Files

• Compute manipulation detection code (MDC) to generate
signature block for each file, and save it

• Later, recompute MDC and compare to stored MDC
– If different, file has changed

• Example: tripwire
– Signature consists of file attributes, cryptographic checksums

chosen from among MD4, MD5, HAVAL, SHS, CRC-16, CRC-
32, etc.)



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Assumptions

• Files do not contain malicious logic when original
signature block generated

• Pozzo & Grey: implement Biba’s model on
LOCUS to make assumption explicit
– Credibility ratings assign trustworthiness numbers

from 0 (untrusted) to n (signed, fully trusted)
– Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk
level

• If credibility rating < risk level, must use special command to
run program



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Antivirus Programs

• Look for specific sequences of bytes (called
“virus signature” in file
– If found, warn user and/or disinfect file

• Each agent must look for known set of
viruses

• Cannot deal with viruses not yet analyzed
– Due in part to undecidability of whether a

generic program is a virus



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Detect Actions Beyond Spec

• Treat execution, infection as errors and
apply fault tolerant techniques

• Example: break program into sequences of
nonbranching instructions
– Checksum each sequence, encrypt result
– When run, processor recomputes checksum,

and at each branch co-processor compares
computed checksum with stored one

• If different, error occurred



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #32

N-Version Programming
• Implement several different versions of algorithm
• Run them concurrently

– Check intermediate results periodically
– If disagreement, majority wins

• Assumptions
– Majority of programs not infected
– Underlying operating system secure
– Different algorithms with enough equal intermediate results may

be infeasible
• Especially for malicious logic, where you would check file accesses



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Proof-Carrying Code
• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this

requirement
– Proof integrated with executable code
– Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs

300–900 bytes, validated in 0.3 –1.3 ms
– Startup cost higher, runtime cost considerably shorter



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Detecting Statistical Changes

• Example: application had 3 programmers working on it,
but statistical analysis shows code from a fourth
person—may be from a Trojan horse or virus!

• Other attributes: more conditionals than in original; look
for identical sequences of bytes not common to any
library routine; increases in file size, frequency of writing
to executables, etc.
– Denning: use intrusion detection system to detect these



May 24, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Key Points

• A perplexing problem
– How do you tell what the user asked for is not

what the user intended?
• Strong typing leads to separating data,

instructions
• File scanners most popular anti-virus agents

– Must be updated as new viruses come out


