
May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #1

Problems

• Flaw Hypothesis Methodology depends on
caliber of testers to hypothesize and
generalize flaws

• Flaw Hypothesis Methodology does not
provide a way to examine system
systematically
– Vulnerability classification schemes help here



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #2

Vulnerability Classification

• Describe flaws from differing perspectives
– Exploit-oriented
– Hardware, software, interface-oriented

• Goals vary; common ones are:
– Specify, design, implement computer system without

vulnerabilities
– Analyze computer system to detect vulnerabilities
– Address any vulnerabilities introduced during system

operation
– Detect attempted exploitations of vulnerabilities



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #3

Example Flaws

• Use these to compare classification schemes
• First one: race condition (xterm)
• Second one: buffer overflow on stack

leading to execution of injected code
(fingerd)

• Both are very well known, and fixes
available!
– And should be installed everywhere …



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #4

Flaw #1: xterm

• xterm emulates terminal under X11 window
system
– Must run as root user on UNIX systems

• No longer universally true; reason irrelevant here

• Log feature: user can log all input, output to file
– User names file
– If file does not exist, xterm creates it, makes owner the

user
– If file exists, xterm checks user can write to it, and if so

opens file to append log to it



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #5

File Exists

• Check that user can write to file requires special
system call
– Because root can append to any file, check in open will

always succeed

Check that user can write to file “/usr/tom/X”
if (access(“/usr/tom/X”, W_OK) == 0){

Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O_WRONLY|O_APPEND))< 0){

/* handle error: cannot open file */
}

}



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #6

Problem

• Binding of file name “/usr/tom/X” to file object
can change between first and second lines
– (a) is at access; (b) is at open
– Note file opened is not file checked

/

etc

passwd X

open(“/usr/tom/X”, O_WRITE)

passwd data

/

etc

passwd

usr

access(“/usr/tom/X”, W_OK)

X datapasswd data
X data

(a) (b)

tom
X

usr

tom



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #7

Flaw #2: fingerd

• Exploited by Internet Worm of 1988
– Recurs in many places, even now

• finger client send request for information to
server fingerd (finger daemon)
– Request is name of at most 512 chars
– What happens if you send more?



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #8

main  local
variables

return address
of main

other return
state info

gets local
variables

parameter to
gets

input buffer

main  local

variables

address of

input buffer

other return

state info

gets local

variables

program to

invoke shell

After

message

Buffer Overflow
• Extra chars overwrite rest of

stack, as shown
• Can make those chars change

return address to point to
beginning of buffer

• If buffer contains small
program to spawn shell,
attacker gets shell on target
system



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #9

Frameworks

• Goals dictate structure of classification scheme
– Guide development of attack tool ⇒ focus is on steps needed to

exploit vulnerability
– Aid software development process ⇒ focus is on design and

programming errors causing vulnerabilities
• Following schemes classify vulnerability as n-tuple, each

element of n-tuple being classes into which vulnerability
falls
– Some have 1 axis; others have multiple axes



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #10

Research Into Secure Operating
Systems (RISOS)

• Goal: aid computer, system managers in
understanding security issues in OSes, and help
determine how much effort required to enhance
system security

• Attempted to develop methodologies and
software for detecting some problems, and
techniques for avoiding and ameliorating other
problems

• Examined Multics, TENEX, TOPS-10, GECOS,
OS/MVT, SDS-940, EXEC-8



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #11

Classification Scheme

• Incomplete parameter validation
• Inconsistent parameter validation
• Implicit sharing of privileged/confidential data
• Asynchronous validation/inadequate serialization
• Inadequate identification/authentication/authorization
• Violable prohibition/limit
• Exploitable logic error



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #12

Incomplete Parameter Validation
• Parameter not checked before use
• Example: emulating integer division in kernel (RISC chip

involved)
– Caller provided addresses for quotient, remainder
– Quotient address checked to be sure it was in user’s protection

domain
– Remainder address not checked

• Set remainder address to address of process’ level of privilege
• Compute 25/5 and you have level 0 (kernel) privileges

• Check for type, format, range of values, access rights,
presence (or absence)



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #13

Inconsistent Parameter
Validation

• Each routine checks parameter is in proper format
for that routine but the routines require different
formats

• Example: each database record 1 line, colons
separating fields
– One program accepts colons, newlines as pat of data

within fields
– Another program reads them as field and record

separators
– This allows bogus records to be entered



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #14

Implicit Sharing of Privileged /
Confidential Data

• OS does not isolate users, processes properly
• Example: file password protection

– OS allows user to determine when paging occurs
– Files protected by passwords

• Passwords checked char by char; stops at first incorrect char
– Position guess for password so page fault occurred between 1st,

2nd char
• If no page fault, 1st char was wrong; if page fault, it was right

– Continue until password discovered



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #15

Asynchronous Validation /
Inadequate Serialization

• Time of check to time of use flaws,
intermixing reads and writes to create
inconsistencies

• Example: xterm flaw discussed earlier



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #16

Inadequate Identification /
Authorization / Authentication

• Erroneously identifying user, assuming another’s
privilege, or tricking someone into executing
program without authorization

• Example: OS on which access to file named
“SYS$*DLOC$” meant process privileged
– Check: can process access any file with qualifier name

beginning with “SYS” and file name beginning with
“DLO”?

– If your process can access file “SYSA*DLOC$”,
which is  ordinary file, your process is privileged



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #17

Violable Prohibition / Limit

• Boundary conditions not handled properly
• Example: OS kept in low memory, user process

in high memory
– Boundary was highest address of OS
– All memory accesses checked against this
– Memory accesses not checked beyond end of high

memory
• Such addresses reduced modulo memory size

– So, process could access (memory size)+1, or word 1,
which is part of OS …



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #18

Exploitable Logic Error

• Problems not falling into other classes
– Incorrect error handling, unexpected side effects,

incorrect resource allocation, etc.
• Example: unchecked return from monitor

– Monitor adds 1 to address in user’s PC, returns
• Index bit (indicating indirection) is a bit in word
• Attack: set address to be –1; adding 1 overflows, changes

index bit, so return is to location stored in register 1
– Arrange for this to point to bootstrap program stored in

other registers
• On return, program executes with system privileges



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #19

Legacy of RISOS

• First funded project examining vulnerabilities
• Valuable insight into nature of flaws

– Security is a function of site requirements and threats
– Small number of fundamental flaws recurring in many contexts
– OS security not critical factor in design of OSes

• Spurred additional research efforts into detection, repair of
vulnerabilities



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #20

Program Analysis (PA)

• Goal: develop techniques to find
vulnerabilities

• Tried to break problem into smaller, more
manageable pieces

• Developed general strategy, applied it to
several OSes
– Found previously unknown vulnerabilities



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #21

Classification Scheme
• Improper protection domain initialization and enforcement

– Improper choice of initial protection domain
– Improper isolation of implementation detail
– Improper change
– Improper naming
– Improper deallocation or deletion

• Improper validation
• Improper synchronization

– Improper indivisibility
– Improper sequencing

• Improper choice of operand or operation



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #22

Improper Choice of Initial
Protection Domain

• Initial incorrect assignment of privileges,
security and integrity classes

• Example: on boot, protection mode of file
containing identifiers of all users can be
altered by any user
– Under most policies, should not be allowed



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #23

Improper Isolation of
Implementation Detail

• Mapping an abstraction into an implementation in such a
way that the abstraction can be bypassed

• Example: virtual machines modulate length of time CPU
is used by each to send bits to each other

• Example: Having raw disk accessible to system as
ordinary file, enabling users to bypass file system
abstraction and write directly to raw disk blocks



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #24

Improper Change

• Data is inconsistent over a period of time
• Example: xterm flaw

– Meaning of “/usr/tom/X” changes between
access and open

• Example: parameter is validated, then
accessed; but parameter is changed
between validation and access
– Burroughs B6700 allowed allowed this



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #25

Improper Naming

• Multiple objects with same name
• Example: Trojan horse

– loadmodule attack discussed earlier; “bin”
could be a directory or a program

• Example: multiple hosts with same IP
address
– Messages may be erroneously routed



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #26

Improper Deallocation or
Deletion

• Failing to clear memory or disk blocks (or
other storage) after it is freed for use by
others

• Example: program that contains passwords
that a user typed dumps core
– Passwords plainly visible in core dump



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #27

Improper Validation

• Inadequate checking of bounds, type, or
other attributes or values

• Example: fingerd’s failure to check input
length



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #28

Improper Indivisibility
• Interrupting operations that should be uninterruptable

– Often: “interrupting atomic operations”
• Example: mkdir flaw (UNIX Version 7)

– Created directories by executing privileged operation to create file
node of type directory, then changed ownership to user

– On loaded system, could change binding of name of directory to
be that of password file after directory created but before change
of ownership

– Attacker can change administrator’s password



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #29

Improper Sequencing
• Required order of operations not enforced
• Example: one-time password scheme

– System runs multiple copies of its server
– Two users try to access same account

• Server 1 reads password from file
• Server 2 reads password from file
• Both validate typed password, allow user to log in
• Server 1 writes new password to file
• Server 2 writes new password to file

– Should have every read to file followed by a write, and vice versa;
not two reads or two writes to file in a row



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #30

Improper Choice of Operand or
Operation

• Calling inappropriate or erroneous
instructions

• Example: cryptographic key generation
software calling pseudorandom number
generators that produce predictable
sequences of numbers



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #31

Legacy

• First to explore automatic detection of
security flaws in programs and systems

• Methods developed but not widely used
– Parts of procedure could not be automated
– Complexity
– Procedures for obtaining system-independent

patterns describing flaws not complete



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #32

NRL Taxonomy

• Goals:
– Determine how flaws entered system
– Determine when flaws entered system
– Determine where flaws are manifested in system

• 3 different schemes used:
– Genesis of flaws
– Time of flaws
– Location of flaws



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #33

Intentional

Malicious

Trojan horse

Nonreplicating

Replicating
Trapdoor

Logic/time bomb

Nonmalicious

Covert channel

Other

Storage

Timing

Genesis of Flaws

• Inadvertent (unintentional) flaws classified using RISOS categories;
not shown above
– If most inadvertent, better design/coding reviews needed
– If most intentional, need to hire more trustworthy developers and do more

security-related testing



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #34

Time of Flaws

• Development phase: all activities up to release of initial version of
software

• Maintenance phase: all activities leading to changes in software
performed under configuration control

• Operation phase: all activities involving patching and not under
configuration control

Time of

introduction

Development

Maintenance

Operation

Requirement/specification/design

Source code

Object code



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #35

Location of Flaw

• Focus effort on locations where most flaws occur,
or where most serious flaws occur

Location

Software

Hardware

Operating system

Support

Application

Privileged utilities

Unprivileged utilities

System initialization
Memory management
Process management/scheduling
Device management
File management
Identification/authentication
Other/unknown



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #36

Legacy
• Analyzed 50 flaws
• Concluded that, with a large enough sample size, an

analyst could study relationships between pairs of classes
– This would help developers focus on most likely places, times,

and causes of flaws
• Focused on social processes as well as technical details

– But much information required for classification not available for
the 50 flaws



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #37

Aslam’s Model

• Goal: treat vulnerabilities as faults and
develop scheme based on fault trees

• Focuses specifically on UNIX flaws
• Classifications unique and unambiguous

– Organized as a binary tree, with a question at
each node. Answer determines branch you take

– Leaf node gives you classification
• Suited for organizing flaws in a database



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #38

Top Level

• Coding faults: introduced during software development
– Example: fingerd’s failure to check length of input string before

storing it in buffer
• Emergent faults: result from incorrect initialization, use,

or application
– Example: allowing message transfer agent to forward mail to

arbitrary file on system (it performs according to specification, but
results create a vulnerability)



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #39

Coding Faults

• Synchronization errors: improper serialization of
operations, timing window between two operations
creates flaw
– Example: xterm flaw

• Condition validation errors: bounds not checked, access
rights ignored, input not validated, authentication and
identification fails
– Example: fingerd flaw



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #40

Emergent Faults

• Configuration errors: program installed incorrectly
– Example: tftp daemon installed so it can access any file; then

anyone can copy any file
• Environmental faults: faults introduced by environment

– Example: on some UNIX systems, any shell with “-” as first char
of name is interactive, so find a setuid shell script, create a link to
name “-gotcha”, run it, and you has a privileged interactive shell



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #41

Legacy

• Tied security flaws to software faults
• Introduced a precise classification scheme

– Each vulnerability belongs to exactly 1 class of
security flaws

– Decision procedure well-defined, unambiguous



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #42

Comparison and Analysis

• Point of view
– If multiple processes involved in exploiting the

flaw, how does that affect classification?
• xterm, fingerd flaws depend on interaction of two

processes (xterm and process to switch file objects;
fingerd and its client)

• Levels of abstraction
– How does flaw appear at different levels?

• Levels are abstract, design, implementation, etc.



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #43

xterm and PA Classification

• Implementation level
– xterm: improper change
– attacker’s program: improper deallocation or

deletion
– operating system: improper indivisibility



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #44

xterm and PA Classification
• Consider higher level of abstraction, where directory is

simply an object
– create, delete files maps to writing; read file status, open file maps

to reading
– operating system: improper sequencing

• During read, a write occurs, violating Bernstein conditions
• Consider even higher level of abstraction

– attacker’s process: improper choice of initial protection domain
• Should not be able to write to directory containing log file
• Semantics of UNIX users require this at lower levels



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #45

xterm and RISOS Classification

• Implementation level
– xterm: asynchronous validation/inadequate

serialization
– attacker’s process: exploitable logic error and

violable prohibition/limit
– operating system: inconsistent parameter

validation



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #46

xterm and RISOS Classification

• Consider higher level of abstraction, where
directory is simply an object (as before)
– all: asynchronous validation/inadequate

serialization
• Consider even higher level of abstraction

– attacker’s process: inadequate
identification/authentication/authorization

• Directory with log file not protected adequately
• Semantics of UNIX require this at lower levels



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #47

xterm and NRL Classification

• Time, location unambiguous
– Time: during development
– Location: Support:privileged utilities

• Genesis: ambiguous
– If intentional:

• Lowest level: inadvertent flaw of serialization/aliasing
– If unintentional:

• Lowest level: nonmalicious: other
– At higher levels, parallels that of RISOS



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #48

xterm and Aslam’s Classification
• Implementation level

– attacker’s process: object installed with incorrect permissions
• attacker’s process can delete file

– xterm: access rights validation error
• xterm doesn’t properly validate file at time of access

– operating system: improper or inadequate serialization error
• deletion, creation should not have been interspersed with access, open

– Note: in absence of explicit decision procedure, all could go into
class race condition



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #49

The Point

• The schemes lead to ambiguity
– Different researchers may classify the same

vulnerability differently for the same
classification scheme

• Not true for Aslam’s, but that misses
connections between different
classifications
– xterm is race condition as well as others;

Aslam does not show this



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #50

fingerd and PA Classification

• Implementation level
– fingerd: improper validation
– attacker’s process: improper choice of operand

or operation
– operating system: improper isolation of

implementation detail



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #51

fingerd and PA Classification
• Consider higher level of abstraction, where storage space

of return address is object
– operating system: improper change
– fingerd: improper validation

• Because it doesn’t validate the type of instructions to be executed,
mistaking data for valid ones

• Consider even higher level of abstraction, where security-
related value in memory is changing and data executed
that should not be executable
– operating system: improper choice of initial protection domain



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #52

fingerd and RISOS Classification

• Implementation level
– fingerd: incomplete parameter validation
– attacker’s process: violable prohibition/limit
– operating system: inadequate

identification/authentication/authorization



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #53

fingerd and RISOS Classification
• Consider higher level of abstraction, where storage space

of return address is object
– operating system: asynchronous validation/inadequate serialization
– fingerd: inadequate identification/authentication/authorization

• Consider even higher level of abstraction, where security-
related value in memory is changing and data executed
that should not be executable
– operating system: inadequate

identification/authentication/authorization



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #54

fingerd and NRL Classification

• Time, location unambiguous
– Time: during development
– Location: support: privileged utilities

• Genesis: ambiguous
– Known to be inadvertent flaw
– Parallels that of RISOS



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #55

fingerd and Aslam Classification

• Implementation level
– fingerd: boundary condition error
– attacker’s process: boundary condition error

• operating system: environmental fault
– If decision procedure not present, could also have been

access rights validation errors



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #56

Common Vulnerabilities

• Unknown interaction with other system
components

• Overflow
• Race conditions
• Environment variables
• Not resetting privileges



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #57

Unknown Interactions

• DNS with bad information
• Assumption about servers running on ports



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #58

Poisoned DNS

• DNS: returns a host name given an IP address
• Attacker “poisons the DNS”

– Say that address 169.237.4.199 corresponds to host
“a.com null; cp /bin/sh /etc/telnetd;”

• Attacker connect to a system running server that
notifies root of any connections or connection
attempts

• It runs a command like this:
echo Login | mail –s nob null; cp /bin/sh /etc/telnetd



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #59

Wrong Server Listening

• Connect to port 79 to obtain information
– fingerd takes name, name and host, and sends

back information about that user on named
host (or local, if no host named)

• Server is chargen (supposed to be on port
19), not fingerd
– finger client prints whatever it is sent



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #60

Overflows

• Buffer overflows
• Integer overflows



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #61

Example: sendmail config file

• sendmail takes debugging flags of form flag.value
– sendmail -d7,102 sets debugging flag 7 to value 102

• Flags stored in array in data segment
• So is name of default configuration file

– It’s called sendmail.cf
• Contains name of local delivery agent

– Mlocal line; usually /bin/mail …



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #62

In Pictures
/ e t c
/ s e n
d m a i
l . c f

configuration file name

byte for flag 0

100
104

128

Create your own config file,
making the local mailer be whatever
you want. Then run sendmail with the
following debug flags settings: flag
–27 to 117 (‘t’), –26 to 110 (‘m’), and
–25 to 113 (‘p’). Have it deliver a
letter to any local address …



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #63

Problems and Solutions

• Sendmail won’t recognize negative flag
numbers

• So make them unsigned (positive)!
–27 becomes 232 – 27 = 4294967269
–26 becomes 232 – 26 = 4294967270
–25 becomes 232 – 26 = 4294967271

• Command is:
sendmail -d4294967269,117 -d4294967270,110 -

d4294967271,113 …



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #64

Race Conditions

• TOCTTOU flaws like xterm
• Races in signaling, interprocess

communication



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #65

Race Signals

• FTP clients aborting:
– ABOR on control connection with urgent flag set
– Closing data connection

• FTP server getting two signals and catching both:
– SIGURG for the ABOR
– SIGPIPE for the close

• FTP server has real UID as root so it can honor
USER
– Once authenticated, effective UID drops to user



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #66

FTP Race Condition

• SIGPIPE causes server to get effective UID root,
write entry to the wtmp file, exit
– No signal handling changed here

• SIGURG sends FTP server back to command loop
– Window is if SIGURG arrives after SIGPIPE but

before exit()
– If SIGURG occurs at that point, FTP server re-enters

FTP command loop and is running with effective UID
root



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #67

Environment Variables

• vi file
– Edit file, then hang up without saving it …
– vi invokes expreserve

• expreserve saves buffer in protected area not
accessible to ordinary users, including editor of the
file

• expreserve invokes mail to send letter to
user



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #68

Where Is the Privilege?

• vi is not setuid to root
– You don't need that to edit your files

• expreserve is setuid to root
– the buffer is saved in a protected area so

expreserve needs enough privileges to copy the
file there

• mail is run by expreserve
– so unless reset, it runs with root privileges



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #69

The First Attack

• Do this:
$ cat > ./mail
#! /bin/sh
cp /bin/sh /usr/attack/.sh
chmod 4755 /usr/attack/.sh
^D
$ PATH=.:$PATH
$ export PATH

… and then run vi and hang up.



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #70

So vi Fixed it …

• Instead of resetting PATH, change
popen("mail user", "w")

to
popen("/bin/mail user", "w")

But … still uses Bourne shell … so



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #71

The Second Attack

• Bourne shell determines white space with
IFS

• Use same program as before, but call it b
and set it up this way:

% IFS="/inmal\t\n "; export IFS
% PATH=.:$PATH; export PATH

• Then run vi and hang up.
– Then “/bin/mail” user acts like b and runs my

program



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #72

Fixing This

• Fix given in most books is:
system("IFS='\n\t ';PATH=/bin:/usr/bin;\

export IFS

PATH;command");

• This sets IFS, PATH; you may want to fix
more



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #73

How to Break This

• Before invoking your program plugh, I do:
% IFS="I$IFS"
% PATH=".:$PATH"
% plugh

• Now your IFS is unchanged since the
Bourne shell interprets the I in
IFS="I$IFS" as a blank, and reads the
first part as FS="\n\t ”



May 31, 2005 ECS 153, Introduction to Computer
Security

Slide #74

Privilege Problems

• At a university, games very popular, owned
as root
– Needed to update high score files

• Graduate students discovered that effective
UID was not reset when a subshell spawned
– So they could start a game which kept a high

score file, and run a subshell – as root!


