Outline for February 17, 2006

Reading: text, §6.4, §9.1–9.3

1. Greetings and felicitations!

- a. Puzzle of the day
- 2. Clark-Wilson Certification and enforcement rules
 - a. C1. All IVPs must ensure that all CDIs are in a valid state when the IVP is run.
 - b. C2. All TPs must be certified to be valid, and each TP is assocated with a set of CDIs it is authorized to manipulate.
 - c. E1. The system must maintain these lists and must ensure only those TPs manipulate those CDIs.
 - d. E2. The system must maintain a list of User IDs, TP, and CDIs that that TP can manipulate on behalf of that user, and must ensure only those executions are performed.
 - e. C3. The list of relations in E2 must be certified to meet the separation of duty requirement.
 - f. E3. The sysem must authenticate the identity of each user attempting to execute a TP.
 - g. C4. All TPs must be certified to write to an append-only CDI (the log) all information necessary to resonstruct the operation.
 - h. C5. Any TP taking a UDI as an input must be certified to perform only valid transformations, else no transformations, for any possible value of the UDI. The transformation should take the input from a UDI to a CDI, or the UDI is rejected (typically, for edits as the keyboard is a UDI).
 - i. E4. Only the agent permitted to certify entities may change the list of such entities associated with a TP. An agent that can certify an entity may not have any execute rights with respect to that entity
- 3. Cryptography
 - a. Codes vs. ciphers
 - b. Attacks: ciphertext only, known plaintext, chosen plaintext
 - c. Types: substitution, transposition
- 4. Classical Cryptography
 - a. Monoalphabetic (simple substitution): $f(a) = a + k \mod n$
 - b. Example: Caesar with k = 3, RENAISSANCE \blacktriangleright UHQDLVVDQFH
 - c. Polyalphabetic: Vigenère, $f_i(a) = a + k_i \mod n$
 - d. Cryptanalysis: first do index of coincidence to see if it's monoalphabetic or polyalphabetic, then Kasiski method.
 - e. Problem: eliminate periodicity of key
- 5. Long key generation
 - a. Running-key cipher: M = THETREASUREISBURIED; K = THESECONDCIPHERISAN; C = MOILVGOFXTMXZFLZAEQ; wedge is that (plaintext, key) letter pairs are not random (T/T, H/H, E/E, T/S, R/E, A/O, S/N, etc.)
 - b. Perfect secrecy: when the probability of computing the plaintext message is the same whether or not you have the ciphertext
 - c. Only cipher with perfect secrecy: one-time pads; C = AZPR; is that DOIT or DONT?
- 6. DES
- 7. Public-Key Cryptography
 - a. Basic idea: 2 keys, one private, one public
 - b. Cryptosystem must satisfy:
 - i. Given public key, computationally infeasible to get private key;
 - ii. Cipher withstands chosen plaintext attack;
 - iii. Encryption, decryption computationally feasible [note: commutativity not required]
 - c. Benefits: can give confidentiality or authentication or both