Outline for February 28, 2008

Reading: text, §15.2–15.4, 17.1–17.2

Discussion Problem. The PGP secure mailing system uses both RSA and a classical cipher called IDEA. When one installs PGP, the software generates two large (512 bits or so) numbers, to produce a modulus of 1024 bits. Such a number is too large to be factored easily. The private and public keys are generated from these quantities. The private key is enciphered with a classical cipher using a user-supplied pass phrase as the key. To send a message, a 128-bit key is randomly generated, and the message enciphered using IDEA with that key; the key is enciphered using the recipient's public key, and the message and enciphered key are sent.

1. If you needed to compromise a user's PGP private key, what approaches would you take?
2. It's often said that PGP gets you the security of a key with length 1024. Do you agree?

Lecture Outline

1. Capabilities
 a. Capability-based addressing
 b. Inheritance of C-Lists
 c. Revocation: use of a global descriptor table

2. Privilege in Languages
 a. Nesting program units
 b. Temporary upgrading of privileges

3. Lock and Key
 a. Associate with each object a lock; associate with each process that has access to object a key (it's a cross between ACLs and C-Lists)
 b. Example: use crypto (Gifford). \(X \) object enciphered with key \(K \). Associate an opener \(R \) with \(X \). Then: **OR-Access:** \(K \) can be recovered with any \(D_i \) in a list of \(n \) deciphering transformations, so \(R = (E_1(K), E_2(K), \ldots, E_n(K)) \) and any process with access to any of the \(D_i \)'s can access the file **AND-Access:** need all \(n \) deciphering functions to get \(K \): \(R = E(E_1(E_2(\ldots E_n(K)\ldots))) \)
 c. Types and locks

4. MULTICS ring mechanism
 a. MULTICS rings: used for both data and procedures; rights are REWA
 b. \((b_1, b_2)\) access bracket—can access freely; \((b_3, b_4)\) call bracket—can call segment through gate; so if \(a \)'s access bracket is \((32,35)\) and its call bracket is \((36,39)\), then assuming permission mode (REWA) allows access, a procedure in:
 - rings 0–31: can access \(a \), but ring-crossing fault occurs
 - rings 32–35: can access \(a \), no ring-crossing fault
 - rings 36–39: can access \(a \), provided a valid gate is used as an entry point
 - rings 40–63: cannot access \(a \)
 c. If the procedure is accessing a data segment \(d \), no call bracket allowed; given the above, assuming permission mode (REWA) allows access, a procedure in:
 - rings 0–32: can access \(d \)
 - rings 33–35: can access \(d \), but cannot write to it (W or A)
 - rings 36–63: cannot access \(d \)

5. Confinement Problem
 a. What it is
 b. Rule of transitive confinement

6. Isolation
a. Total isolation and covert channels
b. Virtual machines