Lecture 18 Outline

Reading: text, §6.4, 9.1–9.2 **Assignments due:** Homework 3, due May 13, 2011

- 1. Certification and enforcement rules of the Clark-Wilson Model
 - a. C1. All IVPs must ensure that all CDIs are in a valid state when the IVP is run.
 - b. C2. All TPs must be certified to be valid, and each TP is associated with a set of CDIs it is authorized to manipulate.
 - c. E1. The system must maintain these lists and must ensure only those TPs manipulate those CDIs.
 - d. E2. The system must maintain a list of User IDs, TP, and CDIs that that TP can manipulate on behalf of that user, and must ensure only those executions are performed.
 - e. C3. The list of relations in E2 must be certified to meet the separation of duty requirement.
 - f. E3. The system must authenticate the identity of each user attempting to execute a TP.
 - g. C4. All TPs must be certified to write to an append-only CDI (the log) all information necessary to reconstruct the operation.
 - h. C5. Any TP taking a UDI as an input must be certified to perform only valid transformations, else no transformations, for any possible value of the UDI. The transformation should take the input from a UDI to a CDI, or the UDI is rejected (typically, for edits as the keyboard is a UDI).
 - i. E4. Only the agent permitted to certify entities may change the list of such entities associated with a TP. An agent that can certify an entity may not have any execute rights with respect to that entity
- 2. Cryptography
 - a. Codes vs. ciphers
 - b. Attacks: ciphertext only, known plaintext, chosen plaintext
 - c. Types: substitution, transposition
- 3. Classical Cryptography
 - a. Monoalphabetic (simple substitution): $f(a) = a + k \mod n$
 - b. Example: Caesar with k = 3, RENAISSANCE \rightarrow UHQDLVVDQFH