
ECS 153, Computer Security Spring Quarter 2013

Homework 4
Due: May 24, 2013 at 11:55pm Points: 100

Questions
1. (25 points) Consider the RSA cipher with p = 5 and q = 7. Show that d = e for all choices of public key d and

private key e.

2. (25 points) Needham and Schroeder suggest the following variant of their protocol:

1. Alice→ Bob : Alice

2. Bob→ Alice : { Alice || rand3 }kBob

3. Alice→ Cathy : { Alice || Bob || rand1 || { Alice || rand3 }kBob }
4. Cathy→ Alice : { Alice || Bob || rand1 || ksession || { Alice || rand3 || ksession }kBob }kAlice

5. Alice→ Bob : { Alice || rand3 || ksession }kBob

6. Bob→ Alice : { rand2 }ksession

7. Alice→ Bob : { rand2−1 }ksession

Show that this protocol solves the problem of replay as a result of stolen session keys.

Hint: Consider two cases: one in which the attacker does not send an initial message to Bob (that is, impersonate
Alice in step 1), and the second where she does.
(text §10.10, exercise 7).

3. (50 points) This problem requires you to do some source code analysis. To do this assignment, you need to
download the file lsu.tar from the homework web site, copy it onto a system at the CSIF, and unpack it. Once
on the CSIF, type

tar xvf lsu.tar

and you will find a directory named lsu containing the program lsu. It consists of several source files, a Makefile,
and a large number of configuration files. The version you have downloaded is preconfigured to compile on the
CSIF systems.

This assignment consists of several steps. First, we’ll run a source code analyzer over the program to find
possible errors. Then, we will examine a couple of error reports.

The program sourceanalyzer is a tool written by Fortify Software. It analyzes programs for possible vulnerabil-
ities, and when it finds one, it describes it and gives a trace of the routines involved in an attack exploiting the
vulnerability.

First, run the program. See the document The Fortify Source Code Analyzer for details on how to do this. Re-
member, this program uses make, so you want to follow the directions in the section “More Complex Programs”.
The document also explains how to interpret the results.

When you run the second command, be sure to save the output in a file; it’s long, and you’ll need to refer to it
later.

Now, look at the output. You will see many potential errors. We’re going to focus on three.

(a) First, search in the output for the string “BDA475DC463CF3193DA9048713AAD0C6”; you should see
that the next line begins with “util.(249)”. This indicates that there is an easily-exploitable (“high”) vul-
nerability through which a user can supply any command (“Command Injection”) to the system() library
call at line 249 of the file util.c.

Version of May 15, 2013 at 10:19pm Page 1 of 2

ECS 153, Computer Security Spring Quarter 2013

(b) Next, search in the output for the string “ADE01E7CEF8599C1929156D862BFD432”; the next line
should begin with “syntax.c(61)”. This indicates that there is a way to manipulate the path name of a
file (“Path Manipulation”) to have the fopen() function at line 61 of the file syntax.c open a file that you
should not be able to, but that this requires some skill to do (“medium”).

(c) Finally, search in the output for the string “12DDF45CCB1A271C8D91F4CDB8B33A13”; the next line
should begin with “lsu.c(138)”. This indicates that the system call setuid() at line 138 of lsu.c’ makes a
change in privileges (“Privilege Management”) that is often misused. But this is hard to exploit (“low”).

For the first two, describe in detail the flow of data that would allow an attacker to exploit the flaw. For example,
for an integer overflow, you would say something like this:

1. Attacker passes 231−1 arguments to program (via main function in file main.c line 25)

2. Program appends 3 more arguments (see main.c line 36)

3. Counter for the loop in which the arguments are appended overflows (see main.c lines 34-38)

Of course, this is a made-up example, not one drawn from lsu. But it gives you the level of detail we want.

Please copy the messages from the run of sourceanalyzer describing the vulnerability and the trace of functions
and files below it. Then write your description beneath.

For the third one, analyze the report. Is this an exploitable vulnerability? If so, explain how to do it; if not,
please explain why it is not exploitable (or not a vulnerability).

Extra Credit
1. (20 points) Consider an RSA digital signature scheme. Alice tricks Bob into signing messages m1 and m2 such

that m = m1m2 mod nBob. Prove that Alice can forge Bob’s signature on m.
(text §10.10, exercise 8).

Version of May 15, 2013 at 10:19pm Page 2 of 2

