
ECS 153, Computer Security Spring Quarter 2016

The Fortify Source Code Analyzer
Sourceanalyzer is a program that analyzes other programs for vulnerabilities. This is a very brief explanation of

its output.

The Program
This C program copies a string into buffer and quits. It’s clearly a demonstration program!

1 # i n c l u d e < s t r i n g s . h>
2 # i n c l u d e <s t d i o . h>
3
4 # d e f i n e MAX SIZE 128
5
6 vo id doMemCpy (c h a r ∗buf , c h a r ∗ in , i n t c h a r s){
7 memcpy (buf , in , c h a r s) ;
8 }
9

10 i n t main () {
11 c h a r buf [6 4] ;
12 c h a r i n [MAX SIZE] ;
13 i n t b y t e s ;
14
15 p r i n t f (” E n t e r b u f f e r c o n t e n t s :\ n ”) ;
16 r e a d (0 , in , MAX SIZE−1);
17 p r i n t f (” By tes t o copy :\ n ”) ;
18 s c a n f (”%d ” , &b y t e s) ;
19
20 doMemCpy (buf , in , b y t e s) ;
21
22 r e t u r n (0) ;
23 }

It has a couple of security problems, were it to be installed setuid and set so anyone could run it. Can you find
them before going any further?

The Analysis
First, log in to one of the systems “pc33.cs.ucdavis.edu” through “pc63.cs.ucdavis.edu”. These are 64 bit machines,
and the Fortify Source Code Analysis suite is installed on them. It is not installed on the other, 32 bit, systems.

Once logged in, we run the sourceanalyzer program over stackbuffer.c, as follows:

/opt/HP_Fortify/HP_Fortify_SCA_and_Apps_4.40/bin/sourceanalyzer -scan gcc stackbuffer.c

You can set your search path to look in the directory /opt/HP Fortify/HP Fortify SCA and Apps 4.40/bin to
avoid typing the full path name, and from here on we will assume you did this.

Here is the output:

[/home/bishop/ecs153-fortify]

[D10CB5094B2FB1C2C6AC8AD7CADECA30 : low : Unchecked Return Value : semantic]
stackbuffer.c(16) : read()

[4940AB43F66960894026F18AF2032001 : high : Buffer Overflow : dataflow]
stackbuffer.c(7) : ->memcpy(2)

stackbuffer.c(20) : ->doMemCpy(2)
stackbuffer.c(18) : <- scanf(1)

Version of April 12, 2016 at 11:45pm Page 1 of 2

ECS 153, Computer Security Spring Quarter 2016

The analyzer has identified two poor programming practices that may lead to security problems.
The function read at line 16 returns a value that is not checked. The danger from this is low. It is a semantic

problem; that is, it results from the semantics of read returning a value.
On line 18 of the program, the function scanf reads something into its second argument (the first argument in

a parameter list is argument 0, so argument 1 is the second one). The arrow “<-” means “input”. This quantity is
than passed to the function doMemCpy as argument 2, the call occurring on line 20. The arrow “->” means “passed
to”. This argument is then passed to the function memcpy on line 7, as the third argument. This means that an input
number controls how many bytes memcpy copies, and if set incorrectly could cause a buffer overflow.

Potential Exploits
Given these problems, let’s see how exploits might work.

1. Unchecked Return Value
This is marked “low”, so it will be difficult to find a security flaw from it. Basically, it requires that the read
system call on line 16 of stackbuffer.c either fail (hence returning −1) or return fewer characters than typed. In
that case, the number entered will be larger than the number of characters read, which could cause a problem.
The word “semantic” means that the irregularity is from the semantics of the call (that is, no return value used).

2. Buffer Overflow
This is marked “high” because the source code analyzer asserts it is easy to exploit. This indicates that user
input enters the program through the scanf call on line 18, which reads data into argument 1. (Arguments
are 0-indexed, so argument 1 is the second argument to scanf, which is &bytes.) This data is then passed as
argument 2 to doMemCpy(), which in turn sends the data to argument 2 of memcpy(). This allows a user to
cause an arbitrary amount of data to be written to the 64-byte buffer buf, potentially overflowing that buffer.

More Complex Programs
Some (most) programs are much more complex, and require a Makefile. The source code analyzer can handle these,
but the procedure is a bit more complicated.

As an example, let’s say we’re in a directory with a complex program that is compiled using a Makefile. You need
to create a build, and then analyze that. So, first type

sourceanalyzer -b mybuild make

and add any flags or targets after the “make”. This compiles the program, and while doing so creates a build named
mybuild. You then have to analyze the build, as follows:

sourceanalyzer -b mybuild -scan

The argument after the “-b” option must be the same as in the previous command.

Version of April 12, 2016 at 11:45pm Page 2 of 2

