
ECS 153, Computer Security Spring Quarter 2016

Homework 2
Due: April 19, 2016 Points: 100

Questions
Remember to justify your answers where appropriate.

1. (10 points) Consider a computer system with three users: Alice, Bob, and Cyndy. Alice owns the file alicerc,
Bob the file bobrc, and Cyndy the file cyndyrc. Alice can read, write, and execute alicerc; Bob and Cyndy can
read that file. Alice can read bobrc; Bob can read and execute it; Cyndy can write it. Finally, Alice has no
accesss to cyndyrc; Bob can read it; and Cyndy can read and execute it.

(a) Create the corresponding access control matrix. Represent the read right as “r”, the write right as “w”, the
own right as “o”, and the execute right as “x”, and assume there are no other rights.

(b) Cyndy gives Alice permission to read cyndyrc, removes Bob’s permission to write that file, and Alice re-
moves Bob’s ability to read alicerc. Show the new access control matrix.

2. (20 points) Someone asks, “Since the Harrison-Ruzzo-Ullman result says that the security question is undecid-
able, why do we waste our time trying to figure out how secure my Linux laptop is?” Please give an answer
justifying the analysis of the security of an individual Linux laptop system (or any system, for that matter) in
light of the HRU result.

3. (30 points) In beginning programming classes, you learned about information hiding, also called encapsulation.
Those rules basically state that data structures should be encapsulated so that, if they need to be changed, the
interface remains the same, so the user (or calling program) does not know what representation of the abstract
data type is used. This can be implemented easily using objects in object-oriented programming languages; in
other languages, one must use language constructs carefully (like the use of static and files in C).

As an example, consider the queue library in the Robust Programming handout [Bis11]. The fragile version
of the library does not provide information hiding or encapsulation, because the program can access the queue
structures directly (through the queue pointers). The robust version does provide encapsulation, because the
program cannot access the queue structures, or queue management structure, directly. No pointers or variables
are ever exposed.

Please identify the application security risk in the OWASP reference [Chr11], and the weakness in the CWE
reference [OWA13], that best describe the failure to encapsulate a data structure as described above.

The three documents referenced above are available on SmartSite in the Resources > Handouts area.

4. (40 points) This problem asks you to implement a buffer overflow attack on a program. In the Resources
area of SmartSite (or the Homework area of the nob.cs.ucdavis.edu class web site) is a program bad.c (also see
below). This program contains a buffer overflow vulnerability; see the call to gets(3) at line 13. Your job is to
exploit the overflow by providing input to the running process that will cause the program to invoke the function
trap (which, you may notice, is not called anywhere else). You will know you’ve succeeded when you run the
program, give it your input, and it prints “Gotcha!”

The following questions will help guide you. Please turn in your answers to them, a hex dump of the input
you use to call trap, and a typescript or screen shot of you running the program bad, giving it your input, and
showing its output.

(a) What is the address of the function trap()? How did you determine this?
(b) What is the address on the stack that your input must overwrite (please give both the address of the memory

location(s), and their contents)? How did you locate this address?
(c) What is the address of buf?
(d) The sled is the input you give to alter the return address stored on the stack. What is the minimum length

your sled must be?

Version of April 7, 2016 at 9:02am Page 1 of 2

ECS 153, Computer Security Spring Quarter 2016

bad.c
This is a listing of bad.c.

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3

4 i n t t r a p (void)
5 {
6 p r i n t f (” Gotcha !\ n ”) ;
7 e x i t (0) ;
8 }
9

10 i n t g e t s t r (void)
11 {
12 char buf [1 2] ;
13 g e t s (buf) ;
14 re turn (1) ;
15 }
16

17 i n t main (void)
18 {
19 g e t s t r () ;
20 p r i n t f (” Overf low f a i l e d \n ”) ;
21 re turn (1) ;
22 }

Extra Credit
5. (20 points) A company publishes the design of its security software product in a manual that accompanies the

executable software.

(a) In what ways does this satisfy the principle of open design? In what ways does it not?
(b) Given that the design is known, what advantages does keeping the source code unavailable give the company

and those who purchase the software? What disadvantages does it cause?

References
[Bis11] Matt Bishop. Robust programming. handout for ECS 153, Computer Security, Mar. 2011.

[Chr11] Steve Christey. 2011 CWE/SANS top 25 most dangerous software errors, Sep. 13, 2011. Available at
http://cwe.mitre.org/top25/.

[OWA13] OWASP. Owasp top 10 - 2013: The ten most critical web application security risks. Technical report, The
Open Web Application Security Project, 2013.

Version of April 7, 2016 at 9:02am Page 2 of 2

