Midterm Study Guide

This is simply a guide of topics that I consider important for the midterm. I don't promise to ask you about them all, or about any of these in particular; but I may very well ask you about any of these, as well as anything we discussed in class, in the discussion section, or that is in the readings (including the papers).

- 1. Fundamentals
 - a. What is security?
 - b. Basics of risk analysis
 - c. Relationship of security policy to security
 - d. Policy vs. mechanism
 - e. Assurance and security
- 2. Saltzer's and Schroeder's principles of secure design
- 3. Robust programming
- 4. Access control matrix
 - a. Matrix
 - b. Primitive operations
 - c. Commands
 - d. Harrison-Ruzzo-Ullman result (undecidability of safety)
- 5. Policies
 - a. Mandatory access control (MAC)
 - b. Discretionary access control (DAC)
 - c. Originator-controlled access control (ORCON)
 - d. Role-based access control (RBAC)
 - e. Policy languages
- 6. Confidentiality Models
 - a. Bell-LaPadula Model
 - b. Lattices and the BLP Model
 - c. Tranquility
- 7. Integrity Models
 - a. Biba Model
 - b. Clark-Wilson model
- 8. Cryptography
 - a. Types of attacks: ciphertext only, known plaintext, chosen plaintext
 - b. Classical ciphers, Cæsar cipher, Vigenère cipher, one-time pad, AES
 - c. Public key cryptosystems; RSA
 - d. Confidentiality and authentication with secret key and public key systems
 - e. Cryptographic hash functions
 - f. Digital signatures
- 9. Key Distribution Protocols
 - a. Kerberos and Needham-Schroeder
 - b. Certificates and public key infrastructure
 - c. Key generation
- 10. Network protocols
 - a. Link encryption, end-to-end encryption
 - b. PGP, PEM: privacy enhancing e-mail
- 11. Intrusion detection
 - a. Architecture of an IDS
 - b. Anomaly-based, signature-based, specification-based IDSes

c. Host-based, network-based, distributed IDSes