
ECS 153, Computer Security Fall Quarter 2019

Lecture 28: December 4, 2019
Reading: text, §24.4.2–24.5 Assignments: Homework 5, due on December 6, 2019 at 11:59pm

Lab 3, due on December 6, 2019 at 11:59pm

1. Greetings and felicitations!

2. Some common vulnerabilities
(a) Catalogues: CVE (Common Vulnerabilities and Exposures), CWE (Common Weakness Enumeration)

(b) 2011 MITRE/SANS Top 25 Most Dangerous Software Errors

(c) OWASP Top 10 – 2017 The Ten Most Critical Web Application Security Risks

3. MITRE/SANS list
(a) Insecure interactions among components

i. SQL injection

ii. OS command injection

iii. Cross-site scripting

iv. Unrestricted upload of file with dangerous type

v. Cross-site request forgery

vi. URL redirect to untrusted site

(b) Risky resource management
i. Buffer copy without checking size of input

ii. Improper limitation of a pathname to a restricted directory

iii. Download of code without integrity check

iv. Inclusion of functionality from untrusted control sphere

v. Use of potentially dangerous function

vi. Incorrect calculation of buffer size

vii. Uncontrolled format string

viii. Integer overflow or wraparound

(c) Porous defenses
i. Missing authentication for critical function

ii. Missing authorization

iii. Use of hard-coded credentials

iv. Missing encryption of sensitive data

v. Reliance on untrusted inputs in a security decision

vi. Execution with unnecessary privileges

vii. Incorrect authorization

viii. Incorrect permission assignment for critical resource

ix. Use of a broken or risky cryptographic algorithm

x. Improper restriction of excessive authentication attempts

xi. Use of a one-way hash without a salt

4. OWASP list
(a) Injection

Version of December 10, 2019 at 12:38 Noon Page 1 of 3



ECS 153, Computer Security Fall Quarter 2019

(b) Broken authentication and session management

(c) Sensitive data exposure

(d) XML external entities

(e) Broken access cointrol

(f) Security misconfiguration

(g) Cross-site scripting

(h) Insecure deserialization

(i) Using components with known vulnerabilities

(j) Insufficient logging and monitoring

5. Comparison
(a) Everything on the OWASP list is also on the MITRE/SANS list

(b) Injection is #1 on both lists

(c) The MITRE/SANS list covers vulnerabilities generally; OWASP covers only web vulnerabilities

6. Penetration Studies
(a) Why? Why not direct analysis?

(b) Effectiveness

(c) Interpretation

7. Flaw Hypothesis Methodology
(a) System analysis

(b) Hypothesis generation

(c) Hypothesis testing

(d) Generalization

8. System Analysis
(a) Learn everything you can about the system

(b) Learn everything you can about operational procedures

(c) Compare to other systems

9. Hypothesis Generation
(a) Study the system, look for inconsistencies in interfaces

(b) Compare to other systems’ flaws

(c) Compare to vulnerabilities models

10. Hypothesis testing
(a) Look at system code, see if it would work (live experiment may be unneeded)

(b) If live experiment needed, observe usual protocols

11. Generalization
(a) See if other programs, interfaces, or subjects/objects suffer from the same problem

(b) See if this suggests a more generic type of flaw

12. Elimination

13. Where to start
(a) Unknown system

Version of December 10, 2019 at 12:38 Noon Page 2 of 3



ECS 153, Computer Security Fall Quarter 2019

(b) Known system, no authorized access

(c) Known system, authorized access

14. Examples
(a) Michigan Terminal System

Version of December 10, 2019 at 12:38 Noon Page 3 of 3


