Design Principles

ECS 153 Spring Quarter 2021

Module 2
Overview

• Simplicity, restriction

• Principles
 • Least Privilege
 • Fail-Safe Defaults
 • Economy of Mechanism
 • Complete Mediation
 • Open Design
 • Separation of Privilege
 • Least Common Mechanism
 • Least Astonishment
Overview

• Simplicity
 • Less to go wrong
 • Fewer possible inconsistencies
 • Easy to understand

• Restriction
 • Minimize access
 • Inhibit communication
Least Privilege

• A subject should be given only those privileges necessary to complete its task
 • Function, not identity, controls
 • Rights added as needed, discarded after use
 • Minimal protection domain
Examples

• The UNIX/Linux user *root*: no access controls applied

• Mail server running as an ordinary user
 • May need to have *root* privileges to open port 25
 • Needs to be able to create files in spool directory
Related: Least Authority

- Principle of Least Authority (POLA)
 - Often considered the same as Principle of Least Privilege
 - Some make distinction:
 - **Permissions** control what subject can do to an object directly
 - **Authority** controls what influence a subject has over an object (directly or indirectly, through other subjects)
Fail-Safe Defaults

• Default action is to deny access
• If action fails, system as secure as when action began
Example: Mail Spool Directory Full

• What to do
 • Notify client email is rejected due to full disk, and close connection
 • SMTP error code is 431
 • Notify administrator that spool directory cannot be written to as it is full

• What not to do
 • Increase privileges so it can store message elsewhere
 • Begin deleting old spooled mail messages
Economy of Mechanism

• Keep it as simple as possible
 • KISS Principle

• Simpler means less can go wrong
 • And when errors occur, they are easier to understand and fix

• Interfaces and interactions
Complete Mediation

• Check every access
• Usually done once, on first action
 • UNIX: access checked on open, not checked thereafter
• If permissions change after, may get unauthorized access
Examples

• When UNIX/Linux checks permissions to read, write a file
 • At open only

• DNS cache poisoning
 • Attacker inserts bogus DNS record in a reply
 • Victim contacts host with poisoned IP address
 • IP address is *not* revalidated so this goes to the wrong host
Open Design

• Security should not depend on secrecy of design or implementation
 • Popularly misunderstood to mean that source code should be public
 • “Security through obscurity”
 • Does not apply to information such as passwords or cryptographic keys
 • Plan for compromise of anything kept secret
Example

• DVD CSS
 • ka authentication key
 • kd disk key
 • $E(k_d, k_{pi})$ encrypted disk key for device

• Algorithm
 • Considered a trade secret
 • Norwegians derived compatible algorithm, made it freely available
 • Lawsuit filed in California court
 • Court posted filings on Internet, unless sealed
 • DVD CCA filed affidavit with actual algorithm
 • and forgot to ask judge to seal it until a day later

<table>
<thead>
<tr>
<th>k_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash(k_d)</td>
</tr>
<tr>
<td>$E(k_d, k_{p1})$</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>$E(k_d, k_{pn})$</td>
</tr>
<tr>
<td>$E(k_t, k_d)$</td>
</tr>
</tbody>
</table>
Separation of Privilege

• Require multiple conditions to grant privilege
 • Separation of duty
 • Defense in depth
Examples

• Company checks over $50,000 require 2 signatures
• FreeBSD: to become *root*, must meet 2 conditions
 • Know *root*'s password
 • Be a member of the *wheel* group (GID 0)
Least Common Mechanism

• Mechanisms should not be shared
 • Information can flow along shared channels
 • Covert channels

• Isolation
 • Virtual machines
 • Sandboxes
Examples

• Address Space Layout Randomization (ASLR)
 • Each instance of a program, when loaded in memory, has different addresses for functions
 • Attacker can’t use information about one process’ layout to attack another

• Site has only Windows 7 systems, all identical
 • So if attacker compromises 1, she can compromise all
Least Astonishment

• Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 • Hide complexity introduced by security mechanisms
 • Ease of installation, configuration, use
 • Human factors critical here
Example

• Configuration file requires all times to be in minutes, except for one field that requires seconds
 • Actual instance: people often entered 0.5 (meaning 30 seconds) in the field
 • Program read the “0”, then stopped at the “.” as it ends an integer
 • Result: something that should have been flushed every 30 seconds was never flushed

• Hawai’i missile alert error
Related: Psychological Acceptability

- Security mechanisms should not add to difficulty of accessing resource
 - Idealistic, as most mechanisms add *some* difficulty
 - Even if only remembering a password
 - Principle of Least Astonishment accepts this
 - Asks whether the difficulty is unexpected or too much for relevant population of users